. 24/7 Space News .
ENERGY TECH
Physicists unravel behavior of strongly disordered superconductors
by Staff Writers
Moscow, Russia (SPX) Dec 01, 2015


The difference between conventional superconductors and pseudogapped superconductors. In normal superconductors, when the temperature rises above critical level superconductivity disappears due to the breakdown of the Cooper pairs, but in pseudogapped superconductors this happens because the disordered arrangement begins to impede the movement of Cooper pairs, and they become localized in a particular region of the lattice. Image courtesy of MIPT Press Service. For a larger version of this image please go here.

Physicists Mikhail Feigel'man (the head of MIPT's theoretical nanophysics laboratory) and Lev Ioffe have explained the unusual effect in a number of promising superconductor materials. Using a theory they developed previously, the scientists have linked superconducting carrier density with the quantum properties of a substance.

In the paper published by the scientists in Physical Review B: Condensed Matter And Materials Physics, they discuss so-called pseudogapped superconductors. The term "gap" appears in the quantum theory of superconductivity and is a definition for the characteristic gap in an electron energy distribution diagram, the energy spectrum. A distinction is made between superconductors with a "conventional" gap and special superconductors, which, even in their normal state, demonstrate something similar to a gap - it is called a pseudogap.

Electron pairs and superconductivity
In order to understand what a "gap" is, we need to look briefly at the theory behind the term. At present, there is no complete model which is able to explain the phenomenon of superconductivity in full detail (and which would enable us, for example, to synthesize a superconductor capable of working at room temperature).

However, one successful model that is most often used today is the BCS theory, which was developed by John Bardeen, Leon Cooper, and John Robert Schrieffer. In BCS theory, a key role is played by Cooper pairs - two electrons bound together with opposite spins.

These pairs are characterized, on the one hand, by a very weak bond between the particles (which is purely of a quantum nature - in classical theory electrons have the same charge and should repel one another), and on the other hand because they do not interact with the crystal lattice and therefore move freely within a substance and do not lose energy in collisions.

If a metal is cooled to a temperature where the thermal motion of particles does not prevent the formation of Cooper pairs, these pairs can be made to move without loss of energy and thus cause the whole specimen to reach its superconducting state.

Figures: at present, the highest temperature of superconductivity under atmospheric pressure is 138K, or -135C

The formation of Cooper pairs alters not only the electrical properties of a substance as a whole, but also electron energy distribution, the energy spectrum. The coupling of the pairs results in a characteristic gap, or pseudogap depending on the circumstances. If the substance is a superconductor, and after cooling to critical temperature superconductivity was reached at the same time as the formation of the Cooper pairs, it is called a gap.

However, if this occurs in the electron spectrum diagram after cooling, but superconductivity has not yet been reached, the term pseudogap is used (meaning it is not a "true" gap, and its formation is not linked to the onset of superconductivity).

If this substance is cooled further, it will become a superconductor and the gap in its spectrum will increase - its value will include both the pseudogap and the superconducting gap itself. The properties of these superconductors are considerably different to those of conventional superconductors.

Superconductors with a normal gap fit in well with the BCS theory, which explicitly links Cooper pairs with the formation of a gap in an energy distribution diagram. According to this theory, superconducting current density is directly proportional to the magnitude of the superconducting gap: Ps ~ DELTA, the more Cooper pairs formed per unit volume, the larger the gap in the energy spectrum, i.e. the size of the gap.

Superconductors with a pseudogap do not fit in with the BCS theory, but they can be described using the theory proposed earlier by Mikhail Feigel'man and Lev Ioffe and their colleagues. In their new paper, the scientists used their theory to calculate the dependence of superconducting current density on pseudogap width for a pseudogapped superconductor.

The key is in the disorder
Studying the structure of pseudogapped superconductors at microscopic level showed that these materials are strongly disordered. This means that their atoms are not arranged in a perfect crystal lattice, or the structure of this lattice is strongly impaired. Examples of pseudogapped superconductors given by the authors of the new paper are thin films of titanium nitride (in which the crystal lattice is impaired in many places) and indium oxide (which can be completely amorphous, like glass).

Disorder plays a key role because the transition to a superconducting state does not happen at the same time as the formation of Cooper pairs. The electrons that are bound to each other in these materials appear before electrical resistance disappears because the numerous variations in the substance's microscopic structure from the ideal order can impede a Cooper pair, which in ordered crystals would move freely without interference.

It should be emphasized that Cooper pairs in a pseudogapped superconductor cannot be described as motionless. As a result of quantum effects, their behaviour is slightly more complex: obeying the uncertainty principle, they do not freeze motionless in one place, but "spread out" over a rather large (dozens of interatomic distances), but finite region. If they could move, this region would cover the entire substance: the illustration below will help to better understand the process.

Deducing electrical parameters of pseudogapped superconductors from quantum properties is important both from a fundamental point of view (scientists are beginning to have a better general understanding of superconductors), and a practical point of view. The researchers note that using indium oxide, a typical pseudogapped superconductor, it has already been possible to create a superconducting quantum device that can be used as a prototype component for a quantum computer.

Having considered the movement of Cooper pairs in a substance with varying degrees of disorder, the scientists deduced the theoretical dependence of the density of Cooper pairs Ps in the substance on pseudogap width. This is an important characteristic, as it is inversely proportional to the inductance of the film (the materials described are obtained in film form) in the superconducting state. Films such as this with high inductance and zero resistance are needed to produce qubits, the fundamental units of quantum computing devices.

In conventional superconductors, the dependence of the density of Cooper pairs on pseudogap width is linear (Ps ~ DELTA), however, in the test substances the dependence is squared (Ps ~ DELTA2). This fact is easy to verify experimentally in a more detailed study, and, if that happens, the theory developed previously by the authors will receive further confirmation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Moscow Institute of Physics and Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Energy from a fossil fuel without carbon dioxide
Karlsruher, Germany (SPX) Nov 26, 2015
The production of energy from natural gas without generating carbon dioxide emissions could fast become a reality, thanks to a novel technology developed by researchers of the Institute for Advanced Sustainability Studies (IASS) in Potsdam and the Karlsruhe Institute of Technology (KIT). In a joint project initiated by Nobel Laureate and former IASS Scientific Director Professor Carlo Rubbia, th ... read more


ENERGY TECH
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

ENERGY TECH
ExoMars has historical, practical significance for Russia, Europe

European payload selected for ExoMars 2018 surface platform

ExoMars prepares to leave Europe for launch site

Tracking down the 'missing' carbon from the Martian atmosphere

ENERGY TECH
Orion's power system to be put to the test

The Ins and Outs of NASA's First Launch of SLS and Orion

Aerojet Rocketdyne tapped for spacecraft's crew module propulsion

Brits Aim for the Stars with Big Bucks on Offer to Conquer Final Frontier

ENERGY TECH
China launches Yaogan-29 remote sensing satellite

China's indigenous SatNav performing well after tests

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

ENERGY TECH
Getting Into the Flow on the ISS

Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

ISS EarthKAM ready for student imaging request

Partners in Science: Private Companies Conduct Valuable Research on the Space Station

ENERGY TECH
"Cyg"-nificant Science Launching to Space Station

Aerojet Rocketdyne completes AJ60 solid booster for Atlas V launcher

Flight teams prepare for LISA Pathfinder liftoff

Rocket launch demonstrates new capability for testing technologies

ENERGY TECH
Neptune-size exoplanet around a red dwarf star

Exiled exoplanet likely kicked out of star's neighborhood

Retro Exo and Its Originators

How DSCOVR Could Help in Exoplanet Hunting

ENERGY TECH
Creating a new vision for multifunctional materials

Cryogenic testing from 1964 to the James Webb Space Telescope

SSL selected to provide new high throughput satellite to Telesat

Satellite Spectrum Is Central To Future Vision For Global Connectivity









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.