Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
'Perfect Storm' Quenching Star Formation around a Supermassive Black Hole
by Staff Writers
Washington DC (SPX) Dec 18, 2014


Artist illustration of the central region of NGC 1266 near its central black hole with jet and gas motions indicated (yellow and white arrows, respectively). The large-scale gas motions induce turbulence on smaller scales, preventing star formation. Image courtesy B. Saxton (NRAO/AUI/NSF).

High-energy jets powered by supermassive black holes can blast away a galaxy's star-forming fuel, resulting in so-called "red and dead" galaxies: those brimming with ancient red stars yet containing little or no hydrogen gas to create new ones.

Now astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered that black holes don't have to be nearly so powerful to shut down star formation. By observing the dust and gas at the center of NGC 1266, a nearby lenticular galaxy with a relatively modest central black hole, the astronomers have detected a "perfect storm" of turbulence that is squelching star formation in a region that would otherwise be an ideal star factory.

This turbulence is stirred up by jets from the galaxy's central black hole slamming into an incredibly dense envelope of gas. This dense region, which may be the result of a recent merger with another smaller galaxy, blocks nearly 98 percent of material propelled by the jets from escaping the galactic center.

"Like an unstoppable force meeting an immovable object, the particles in these jets meet so much resistance when they hit the surrounding dense gas that they are almost completely stopped in their tracks," said Katherine Alatalo, an astronomer with the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena and lead author on a paper published in the Astrophysical Journal.

This energetic collision produces powerful turbulence in the surrounding gas, disrupting the first critical stage of star formation.

"So what we see is the most intense suppression of star formation ever observed," noted Alatalo.

Previous observations of NGC 1266 revealed a broad outflow of gas from the galactic center traveling up to 400 kilometers per second. Alatalo and her colleagues estimate that this outflow is as forceful as the simultaneous supernova explosion of 10,000 stars. The jets, though powerful enough to stir the gas, are not powerful enough to give it the velocity it needs to escape from the system.

"Another way of looking at it is that the jets are injecting turbulence into the gas, preventing it from settling down, collapsing, and forming stars," said National Radio Astronomy Observatory astronomer and co-author Mark Lacy.

The region observed by ALMA contains about 400 million times the mass of our Sun in star-forming gas, which is 100 times more than is found in giant star-forming molecular clouds in our own Milky Way. Normally, gas this concentrated should be producing stars at a rate at least 50 times faster than the astronomers observe in this galaxy.

Previously, astronomers believed that only extremely powerful quasars and radio galaxies contained black holes that were powerful enough to serve as a star-forming "on/off" switch.

"The usual assumption in the past has been that the jets needed to be powerful enough to eject the gas from the galaxy completely in order to be effective at stopping start formation," said Lacy.

To make this discovery, the astronomers first pinpointed the location of the far-infrared light being emitted by the galaxy. Normally, this light is associated with star formation and enables astronomers to detect regions where new stars are forming.

In the case of NGC 1266, however, this light was coming from an extremely confined region at the center of the galaxy. "This very small area was almost too small for the infrared light to be coming from star formation," noted Alatalo.

With ALMA's exquisite sensitivity and resolution, and along with observations from CARMA (the Combined Array for Research in Millimeter-wave Astronomy), the astronomers were then able to trace the location of the very dense molecular gas at the galactic center. They found that the gas is surrounding this compact source of far-infrared light.

Under normal conditions, gas this dense would be forming stars at a very high rate. The dust embedded within this gas would then be heated by young stars and seen as a bright and extended source of infrared light. The small size and faintness of the infrared source in this galaxy suggests that NGC 1266 is instead choking on its own fuel, seemingly in defiance of the rules of star formation.

The astronomers also speculate that there is a feedback mechanism at work in this region. Eventually, the black hole will calm down and the turbulence will subside so star formation can begin anew. With this renewed star formation, however, comes greater motion in the dense gas, which then falls in on the black hole and reestablishes the jets, shutting down star formation once again.

NGC 1266 is located approximately 100 million light-years away in the constellation Eridanus. Leticular galaxies are spiral galaxies, like our own Milky Way, but they have little interstellar gas available to form new stars.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Radio Astronomy Observatory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Using supermassive black holes to measure cosmic distances
Copenhagen, Denmark (SPX) Nov 28, 2014
One of the major problems in astronomy is measuring very large distances in the universe. The current most common methods measure relative distances, but now research from the Niels Bohr Institute demonstrates that precise distances can be measured using supermassive black holes. The results are published in the scientific journal, Nature. The active galaxy NGC 4151 called the, 'Eye of Sau ... read more


TIME AND SPACE
Moon Express testing compact lunar lander at Kennedy

UK Plans to Drill Into Moon, Explore Feasibility of Manned Base

Carnegie Mellon Unveils Lunar Rover "Andy"

Why we should mine the moon

TIME AND SPACE
Spike seen in methane on Mars, but source unknown

Mars Mountain was All Wet

Goddard instrument makes first detection of organic matter on Mars

MAVEN Identifies Links in Chain Leading to Mars Atmospheric Loss

TIME AND SPACE
NASA Voyager: 'Tsunami Wave' Still Flies Through Interstellar Space

Russia, US to Cooperate on Orion Spacecraft Modernization

France's Accor in strategic alliance with China's Huazhu

From Myth to Legend: Orion Test a Success

TIME AND SPACE
China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

Service module of China's returned lunar orbiter reaches L2 point

TIME AND SPACE
Boeing Covers Groundwork in Second Milestone For Commercial Crew

Orbital says it will complete ISS deliveries by end of 2016

OPALS: Light Beams Let Data Rates Soar

ATV views Space Station as never before

TIME AND SPACE
2015 to be a busy year, says ISRO chief

ILS Proton launches Yamal-401 satellite marking 400th Proton mission

Russia launches Yamal-401 communication satellite

O3b satellites integrated on Soyuz For Dec 18 Arianespace flight

TIME AND SPACE
Super-Earth spotted by ground-based telescope, a first

Astronomers spot Pluto-size objects swarming about young sun

Observing Solar System Worlds as if They Were Distant Exoplanets

Finding infant earths and potential life just got easier

TIME AND SPACE
GaN-based LEDs in harsh radiation environments

New high-entropy alloy light as aluminum, as strong as titanium

Squid supplies blueprint for printable thermoplastics

Composite materials can be designed in a supercomputer virtual lab




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.