. 24/7 Space News .
STELLAR CHEMISTRY
Our Milky Way may be more fluffy, less wiry
by Staff Writers
Baltimore MD (SPX) Dec 17, 2021

In a map of the Milky Way, the neighboring spiral arm just beyond the Sun is known as the Perseus arm. Astronomers created this map by measuring the locations of natural radio sources known as masers (pink dots in pullouts at right) and dust clouds (blue dots). At upper right, a shaded region shows the previously believed shape of the Perseus arm, demarcated by a combination of masers and dust clouds. New measurements (middle right) show that some of these dust clouds are much closer or farther from the Sun than originally thought. As a result, the Perseus arm may be much clumpier and less well-defined (lower right).

Our Milky Way has long been known to be a spiral galaxy, shaped much like a fried egg with a bulbous central bulge and a thin, flat disk of stars. For decades, astronomers have struggled to map the Milky Way's disk and its associated spiral arms. As the old saying goes, you can't see the forest for the trees, and if you're in the middle of the forest, how can you map its groves without a bird's-eye view?

Previous work has suggested that the Milky Way is what's known as a "grand design" spiral, with long, narrow, well-defined spiral arms. However, new research finds that at least one portion of the outer Milky Way (beyond the Sun's location) is much more clumpy and chaotic.

"We have long had a picture of the galaxy in our minds, based on a combination of measurements and inference," said Josh Peek of the Space Telescope Science Institute (STScI) in Baltimore, Maryland. "This work calls that picture into question. We don't see evidence that pieces we've been connecting up are actually connected."

Distances are Key
When mapping our galaxy, the biggest challenge is finding the distance to any given star, star cluster, or gas clump. The gold standard is to use parallax measurements of naturally occurring radio sources called masers, some of which are found in high-mass star-forming regions. However, this technique inevitably leaves gaps.

To fill those gaps, astronomers switch from examining star-forming regions to gas clouds, and more specifically, the motions of those gas clouds. In an ideal situation, the line-of-sight motion we measure for a gas cloud is directly related to its distance due to the overall rotation of the Milky Way. As a result, by measuring gas velocities, we can determine distances and hence the underlying structure of the galaxy.

The question then becomes, what about a non-ideal situation? While the motion of any given gas cloud might be dominated by its rotation around the galactic center, it undoubtedly has some additional, more random motions as well. Can those extra motions throw off our maps?

Chunky and Lumpy
To investigate this question, Peek and his colleagues examined not the gas, but the dust. In general within our galaxy, gas and dust are closely associated, so if you can map one, you also map the other.

3D dust maps can be created by examining the colors of large collections of stars spread across the sky. The more dust that is between the star and our telescope, the redder the star will appear compared to its natural color.

Peek and his team examined a region of space known as the Perseus spiral arm, which is beyond our Sun in the Milky Way's disk. They compared the distances measured via dust reddening to those determined by the velocity relationship. They found that many of the clouds do not, in fact, lie at the distance of the Perseus arm, but instead stretch along a distance of some 10,000 light-years.

"We don't have long, skinny spiral arms after all, at least in this section of the galaxy. There are chunks and lumps that don't look like anything," explained Peek. "It's a good possibility that the outer disk of the Milky Way resembles the nearby galaxy Messier 83, with shorter, chopped-up pieces of arms."

Revising Our Map
While this latest research focused on the outer Milky Way, Hubble Fellow Catherine Zucker, a member of Peek's team at STScI, is planning to extend that work to the inner Milky Way. The region interior to the Sun's orbit is where the spiral arms that are most actively forming stars reside.

Zucker plans to create 3D dust maps using existing large-scale infrared surveys to measure the reddening of some 1 to 2 billion stars. By linking those new dust maps with existing gas velocity surveys, astronomers can refine our map of the inner Milky Way much as they have already done with the outer galaxy.

"Previous 3D dust mapping efforts have largely relied on data at wavelengths visible to the human eye. No one has used deep infrared data to create a 3D dust map," said Zucker. "We may find that this region, like the Perseus arm, is more chaotic and less well defined."

Even more insights may come from the upcoming Nancy Grace Roman Space Telescope and Vera Rubin Observatory. The Roman Space Telescope will have the capability to map the entire galactic plane in a few hundred hours. Also, its infrared measurements will cut through the dust.

"We could see clear to the other side of the galaxy for the first time. If a survey like this is selected for Roman, it would be stunning," said Peek.

Rubin, on the other hand, will be able to make deep observations of faint objects at a variety of optical wavelengths. By combining Roman's infrared view of the sky with Rubin's deep, multi-wavelength optical data, we may finally map our own cosmic "forest."

This work is accepted for publication in The Astrophysical Journal.

Research paper


Related Links
Space Telescope Science Institute
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Gaia reveals that most Milky Way companion galaxies are newcomers to our corner of space
Paris (ESA) Nov 26, 2021
Data from ESA's Gaia mission is re-writing the history of our galaxy, the Milky Way. What had traditionally been thought of as satellite galaxies to the Milky Way are now revealed to be mostly newcomers to our galactic environment. A dwarf galaxy is a collection of between thousand and several billion stars. For decades it has been widely believed that the dwarf galaxies that surround the Milky Way are satellites, meaning that they are caught in orbit around our galaxy, and have been our constant ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Russia ready to 'fight' for space tourism supremacy

NASA selects second private astronaut mission to Space Station

Space Habitat Market size to grow by USD 94.92 Bn

Blue Origin plans to launch largest crew yet Saturday

STELLAR CHEMISTRY
SpaceX launches Turksat-5b

Webb placed on top of Ariane 5

ESA contract to advance Vega-C competitiveness

NASA 'Fires Up' Artemis RS-25 Rocket Engines with New Components

STELLAR CHEMISTRY
NASA's Ingenuity Mars Helicopter Reaches a Total of 30 Minutes Aloft

NASA's Perseverance Mars Rover Makes Surprising Discoveries

Out of the Shadows of the Maria Gordon notch: Sols 3328-3329

Cliffs and notches keeps Curiosity team busy: Sols 3330-3332

STELLAR CHEMISTRY
New technologies make Chinese astronauts' in-orbit lives easier

China's Long March carrier rocket embarks on 400th mission

On they march as China records 401st flight of Long March rocket family

First crew of space station provide a full update on China's progress

STELLAR CHEMISTRY
Investing recovery and resilience funds in space projects

New space economy ready to lift off thanks to Finnish innovation

Kepler Communications announces testing of Aether Network with Spire Global

Kleos' Patrol Mission Satellites Ready and Shipped to Launch Site

STELLAR CHEMISTRY
Long-Range Discrimination Radar Reshapes Adversaries' Calculus for Attacks Against US Homeland

Understanding cobalt's human cost

New smart-roof coating enables year-round energy savings

Nike buys virtual sneaker firm as metaverse buzz grows

STELLAR CHEMISTRY
Founding members of world's first independent space science mission confirmed

Life arose on hydrogen energy

Stellar "ashfall" could help distant planets grow

"Newer, nimbler, faster:" Venus probe will search for signs of life in clouds of sulfuric acid

STELLAR CHEMISTRY
NASA's Juno Spacecraft 'Hears' Jupiter's Moon

Deep Mantle Krypton Reveals Earth's Outer Solar System Ancestry

Cracking the mystery of nitrogen ice dynamics on Pluto

Planet decision that booted out Pluto is rooted in folklore, astrology









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.