. 24/7 Space News .
WATER WORLD
Ocean acidification can also promote shell formation
by Staff Writers
Amsterdam, The Netherlands (SPX) Jan 31, 2017


Microscopic pictures of individual foraminifers. Left: A foraminifer with a shell containing four chambers of which one is empty. Also note the spines. Right: Picture of the interior of a foraminifer. The green colour is caused by seawater with an indicator showing that the acidity has changed. The actual size of the foraminifer is about 0.25 millimeter. Image courtesy Dr. Lennart de Nooijer (NIOZ).

More carbon dioxide (CO2) in the air also acidifies the oceans. It seemed to be the logical conclusion that shellfish and corals will suffer, because chalk formation becomes more difficult in more acidic seawater. But now a group of Dutch and Japanese scientists discovered to their own surprise that some tiny unicellular shellfish make better shells in an acidic environment. This is a completely new insight.

Researchers from the Royal Dutch Institute for Sea Research (NIOZ) and the Japanese Agency for Marine-Earth Science and Technology (JAMSTEC) found in their experiments that so-called foraminifera might even make their shells better in more acidic water.

These single-celled foraminifera shellfish occur in huge numbers in the oceans. The results of the study are published in the leading scientific journal Nature Communications. Since 1750 the acidity of the ocean has increased by 30%. According to the prevailing theory and related experiments with calcareous algae and shellfish, limestone (calcium carbonate) dissolves more easily in acidic water.

The formation of lime by shellfish and corals is more difficult because less carbonate is available under acidic conditions. The carbonate-ion relates directly to dissolved carbon dioxide via two chemical equilibrium reactions.

Self-regulating biochemical magic trick
The classical theory is based on purely chemical processes by which the rate at which lime is created is determined entirely by the acidity of the water. NIOZ researcher and shared first author Lennart de Nooijer: "In our experiments the foraminifera were regulating the acidity at the micro level.

"In the places where shell formation occurs, the acidity was substantially lower than in the surrounding seawater. Foraminifera expel large amounts of hydrogen ions through their cell wall. This leads to acidification of their immediate micro-environment causing the equilibrium between carbon dioxide and carbonate to change in favour of carbon dioxide.

"The organism take up the increased concentration of carbon dioxide quickly through its cell wall. On the inner side of the cell wall, a low acidity prevails due to the massive excretion of protons. Under these conditions the ingested carbon dioxide is again converted to carbonate, which reacts with calcium to form lime. Such an active biochemical regulation mechanism has never been found before."

Can self-regulating single-celled organisms lead to a more rapid global warming?
The surface layer of the ocean is in equilibrium with the atmosphere. Therefore, more carbon dioxide in the air also leads to more dissolved carbon dioxide in the ocean's surface .

"This finding may have important implications for the relationship between carbon dioxide levels in the air and the formation of calcareous structures by organisms," says co-author Professor Gert-Jan Reichart.

"If the classic hypothesis holds and more carbon dioxide leads to less lime production, the oceans can continue to take up CO2 from the atmosphere. But what if the majority of the organisms can regulate the chemical form of their inorganic carbon by biochemical processes like our foraminifers did, and continue to form lime structures in a more acidic ocean?

"Over time, the concentration of dissolved carbon dioxide in the oceans may start to increase. Consequently, the ability of the oceans to take up a large part of the carbon dioxide in the air may start to decrease. This would mean that more carbon dioxide would remain in the air, leading to a more rapid warming of our planet."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
NIOZ Royal Netherlands Institute for Sea Research
Water News - Science, Technology and Politics






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
High price of shrimp linked to water pollution: study
Miami (AFP) Jan 30, 2017
The price of big-sized shrimp can rise as a direct result of pollution from fertilizers that cause dead zones in coastal waters, US researchers said Monday. The study in the Proceedings of the National Academy of Sciences is the first to show how a low-oxygen water problem called hypoxia is related to the climbing price of seafood. "Many studies have documented the ecological impacts of ... read more


WATER WORLD
Scientists and students tackle omics at NASA workshop

Mister Trump Goes to Washington

Airbus delivers propulsion test module for the Orion programme to NASA

NASA to rely on Soyuz for ISS missions until 2019

WATER WORLD
Major review completed for SLS Exploration Upper Stage

ULA and team launches US military spy satellite

Airbus Safran Launchers in 2016: we keep our promises

India Defers Much-Awaited Heaviest Rocket Launch

WATER WORLD
Similar-Looking Ridges on Mars Have Diverse Origins

Commercial Crew's Role in Path to Mars

Bursts of methane may have warmed early Mars

Long Eclipse Avoidance Manoeuvres Performed Successfully on MOM Spacecraft

WATER WORLD
China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

Beijing's space program soars in 2016

WATER WORLD
ESA Planetary Science Archive gets a new look

Iridium-1 NEXT Launched on a Falcon 9

Shaping the Future: Aerospace Works to Ensure an Informed Space Policy

Russia-China Joint Space Studies Center May Be Created in Southeastern Russia

WATER WORLD
New white paper reviews latest support for Redefinition of the Kilogram by 2018

A new approach to 3-D holographic displays greatly improves the image quality

UCLA physicists map the atomic structure of an alloy

Facebook's Oculus ordered pay $500 mn in suit on stolen tech

WATER WORLD
First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

Looking for life in all the right places with the right tool

Could dark streaks in Venusian clouds be microbial life

WATER WORLD
Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.