. 24/7 Space News .
SOLAR SCIENCE
North Pole solar eclipse excited auroras on the other side of the world
by Staff Writers
Hefei, China(SPX) Jan 13, 2022

Energy and particles from the sun interact with gases in the atmosphere to create stunning light shows called auroras, like this instance of aurora seen from the International Space Station.

A solar eclipse over the Arctic created changes in auroras in both of Earth's hemispheres due to connections through the planet's magnetic field, according to a new study. The new work could help scientists predict changes in the near-Earth environment that can interfere with satellite communication.

On 10 June 2021, the moon's shadow darkened much of the Earth's northern polar region, providing scientists with an unprecedented opportunity to explore the impacts natural events have in Earth's geospace, thousands of kilometers above Earth.

The eclipse affected auroras in both the Northern and Southern hemispheres, according to the new study, published in the AGU journal Geophysical Research Letters, which publishes high-impact, short-format reports with immediate implications spanning all Earth and space sciences.

Auroras are the shimmering light shows in the sky that flare up when solar storms shoot out energy and particles that interact with gases in the atmosphere. Some of those particles travel along the lines of Earth's magnetic field to the poles, creating the northern lights in the Northern Hemisphere and the southern lights in the South.

"Excitingly, we found that the aurora and upper atmosphere were disturbed in the Southern Hemisphere where the eclipse did not cover," Dang said. "This is because the upper atmosphere in the two hemispheres is connected through the magnetic field lines and the magnetosphere."

The new research represents the first time scientists have shown how an eclipse affects the coupling between the ionosphere-the regions where energy from the Sun ionizes the atmosphere and where auroras occur-and the magnetosphere, the bubble around Earth created by Earth's magnetic field.

Dang and his colleagues discovered the eclipse not only altered the local atmosphere under the moon's shadow but also caused rings around the poles to form in the currents in the ionosphere and changed the activity of the auroras in both hemispheres. The rings are the result of disturbances to the electron density in the atmosphere created by charged aurora particles.

The new research improves scientists' understanding of the geospace environment and could help researchers predict the effects from future eclipses. This new study also illustrates the sizable impact of the solar eclipse on the ionosphere, which can absorb, bend and reflect the radio signals used by Global Positioning System (GPS) satellites, potentially creating disturbances in communication and navigation.

Ringing The Ionosphere
Geospace is the region around Earth that covers the upper atmosphere to the edges of Earth's magnetic field. It includes the ionosphere, which comprises regions of the upper atmosphere with large numbers of electrically charged ions and electrons. These charged particles occur when energy from the Sun knocks electrons off of gas molecules in the atmosphere, and so their numbers increase during the day and drop at night.

Previous studies have shown that a solar eclipse can also reduce the density of particles in the ionosphere in the path of the shadow.

Dang and his collaborators developed a model that combines the upper atmosphere, the magnetosphere and electrical currents flowing in this system and used it to understand how the June solar eclipse affected Earth's geospace.

The current system in the ionosphere is complicated, so the researchers focused specifically on the currents flowing between the magnetosphere and the ionosphere along the magnetic field lines. These lines run out from the South Pole, around the planet to the North Pole and down through its axis.

They were surprised that the eclipse caused even stronger auroral activity in the unobscured Southern Hemisphere than in the Northern Hemisphere. These changes in the auroras could potentially be seen by observers.

"This is unique and interesting research that modeled global impacts of the solar eclipse," said Toshi Nishimura, a space physicist at Boston University who was not involved in the research. "Usually, people don't think about the connection between the solar eclipse and aurora because the eclipse is a daytime phenomenon and the aurora is a phenomenon in the night at high latitudes. But an eclipse can sometimes occur at high latitudes and this research demonstrated its impact on aurora."

Research Report: "Global Effects of a Polar Solar Eclipse on the Coupled Magnetosphere-Ionosphere System"


Related Links
University of Science and Technology of China
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
Physicists determine how auroras are created
Ames IA (SPX) Jun 08, 2021
The aurora borealis, or northern lights, that fill the sky in high-latitude regions have fascinated people for thousands of years. But how they're created, while theorized, had not been conclusively proven. In a new study, a team of physicists led by University of Iowa reports definitive evidence that the most brilliant auroras are produced by powerful electromagnetic waves during geomagnetic storms. The phenomena, known as Alfven waves, accelerate electrons toward Earth, causing the particles to ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Japan space tourist eyes Mariana Trench trip after ISS

NASA's newest astronaut class begins training in Houston

CES show highlights: Robo-dogs, self-sailing boat, brain tech

CES tech fair opens under pandemic shadow

SOLAR SCIENCE
Gilmour Space fires up for 2022 with Australia's largest rocket engine test

Indian Space Agency tests cryogenic engine for its first-ever manned mission

Virgin Orbit air drops rocket carrying 7 satellites

SpaceX launches 105 satellites from Florida

SOLAR SCIENCE
Sols 3355-2256: Closer to the Prow

Martian Meteorite's organic materials origin not biological

Sol 3354: Tantalizingly Out of Reach

Sol 3353: Raise the (Martian) Roof

SOLAR SCIENCE
Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

CASC plans more than 40 space launches for China in 2022

China's astronauts mark New Year with livestream from space

SOLAR SCIENCE
Update on Africa's 1st Satellite constellation built by CPUT

Advances in Space Transportation Systems Transforming Space Coast

Planet to launch 44 SuperDove satellites on SpaceX's Falcon 9

Kleos' Patrol Mission satellites to launch in April

SOLAR SCIENCE
A second successful launch for SpaceCloud into space

Using High Temperature Composites For Sustainable Space Travel

Mangata Networks announces funding for satellite edge computing network

Take-Two to buy 'Farmville' creator Zynga for $12.7 bn

SOLAR SCIENCE
Unusual team finds gigantic planet hidden in plain sight

Cheops reveals a rugby ball-shaped exoplanet

Pandora mission to study stars and exoplanets continues toward flight

From dust to planet: how gas giants form

SOLAR SCIENCE
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.