. 24/7 Space News .
AEROSPACE
Newly-acquired AFRL test aircraft to aid personnel recovery research
by Holly Jordan for AFRL News
Wright-Patterson AFB OH (AFNS) Jan 06, 2021

CubCrafters pilot Mark Keneston (left) and Air Force Research Laboratory pilot Dr. Eric Geiselman are pictured next to AFRL LASH Lysander XCub at the Lewis A. Jackson Regional Airport in Greene County, Ohio, on Dec. 21, 2020. The aircraft made a brief stop before traveling on to the AFRL 711th Human Performance Wing�s contracted research flight test organization facility in Maryland, where it will be used to advance the initial "Lysander" personnel recovery flight experiments. (U.S. Air Force photo/Dr. Darrel G. Hopper)

A small aircraft that is poised to make a big impact on military personnel recovery made a brief stop in the Dayton, Ohio, area on its way to St. Mary's County, Maryland, where it will be used to test the Air Force Research Laboratory-developed Low Altitude Sensing Helmet system.

On Dec. 21, 2020, the CubCrafters XCub aircraft was ferried from Yakima, Washington, to the Lewis A. Jackson Regional Airport near Dayton, Ohio, on its journey to the AFRL 711th Human Performance Wing's contracted research flight test organization facility. The aircraft was recently purchased by AFRL to advance the initial "Lysander" flying experiment, which will demonstrate the Low Altitude Sensing Helmet system, known as LASH.

LASH, a portable kit developed within the AFRL 711th Human Performance Wing's Airman Systems Directorate, contains specialized equipment including a flight helmet, a thermal camera, night vision goggles, and various other components.

The kit can quickly and easily be installed onto nearly any general aviation aircraft to equip pilots for low-level, low-speed, nighttime flight, something that is essential for personnel recovery and other "featherweight airlift" special missions, according to Dr. Darrel G. Hopper, 711th Human Performance Wing project lead.

"The Air Force's CODE [Combat Operations in Denied Environment] program determined that these type of missions could not be executed effectively by the large aircraft that we have been using over the last 20 years in areas where we have air dominance," said Hopper.

"Project Lysander was conceived as a method of rescuing isolated personnel in both heavily defended and undefended airspace. A critical element of the project was determined to be a carry-on kit that could allow such operations." He explained that the LASH system kit was designed to fill this need and provide pilots with sensory situational awareness required to fly safely, at night, at extremely low altitudes and slow airspeeds.

Hopper explained that LASH came about after Air Combat Command and the Air Force Strategic Development Planning and Experimentation office at AFRL asked the 711th Human Performance Wing's Airman Systems Directorate to lead this research effort.

"They called on us based on our expertise in this type of work," Hopper explained. "Our directorate has decades of experience in researching, developing, and fielding helmet- and cockpit-mounted displays and other wearable vision aides for combat pilots, aircrews, and special operations warriors."

After careful study of mission requirements and aircraft capabilities, AFRL researchers designed the LASH kit using a number of mostly commercial-off-the-shelf components. The kit was packaged into a compact, easy-to-transport, one-person carrying system that could be easily fitted temporarily to virtually any small aircraft without additional modification.

Hopper said the CubCrafters XCub was identified by ACC as the safest and most capable commercial-off-the-shelf aircraft for the initial flying experiment to test the LASH System kit.

"If we can demonstrate that the XCub can be flown safely at night at low speed and low altitude using the LASH night vision aids, then we can expand LASH system kit use to other types of short takeoff and landing general aviation aircraft."

After the aircraft reaches the flight test organization in Maryland, it will first be used to fit-test the LASH system. AFRL researchers and contractor partners will next refine the installation and de-installation process as well as baseline test metrics, and develop the associated test cards, while flying without the kit.

The first flights with the LASH system are scheduled for early spring 2021. If fight tests are successful and program objectives are achieved, the LASH system could be on track for technology transfer and possible deployment as early as 2022.

"This system offers the potential to greatly expand our capability to perform necessary personnel recovery and related missions," said Hopper. "The acquisition and delivery of this test vehicle is a critical milestone in getting the LASH technology and featherweight airlift capability into the hands of the warfighter."

Hopper added that after the XCub test aircraft has completed its role in this project, AFRL will be able to use it as a test asset for future research projects as well.


Related Links
Air Force Research Laboratory
Aerospace News at SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


AEROSPACE
B-52s fly over Middle East in show of force
Washington DC (UPI) Dec 30, 2020
Two B-52 "Stratofortress" bombers of the U.S. Air Force arrived in the Middle East in a show of short-notice force, U.S. Central Command said on Wednesday. CENTCOM's announcement did not specify a destination for the planes, but emphasized their in-flight refueling capabilities and noted that their "deliberate appearance" was meant to "underscore the U.S. military's commitment to regional security and demonstrate a unique ability to rapidly deploy overwhelming combat power on short notice." ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

AEROSPACE
China to launch core module of space station in first half of 2021

Marsquakes, water on other planets, asteroid hunting highlight 2020 in space

US may buy seat on Russia's Soyuz for astronaut's flight to ISS in Spring 2021,

NASA awards contract for Cold Stowage II

AEROSPACE
SpaceX, L3Harris pursue hypersonic missile defense system

Exolaunch integrates 30 small sat for SpaceX dedicated rideshare mission

SDA awards contract to SpaceX

Launch of Long March 4C closes out China 2020 space plan

AEROSPACE
Fluvial Mapping of Mars

A Martian Roundtrip: NASA's Perseverance Rover Sample Tubes

How to get people from Earth to Mars and safely back again

NASA moves forward with campaign to return Mars samples to Earth

AEROSPACE
China's Chang'e-5 orbiter embarks on new mission to gravitationally stable spot at L1

China plans to launch four manned spacecraft in next two years

Mission accomplished, now on to the next: China Daily editorial

China prepares to launch Long March-8 Y1 rocket

AEROSPACE
Record Year for FAA Commercial Space Activity

Voyager Space Holdings to buy all of Nanoracks

Lockheed Martin To Acquire Aerojet Rocketdyne

Russia lifts UK telecom satellites into orbit

AEROSPACE
New radiation vest technology protects astronauts, doctors

Defects aid mother-of-pearl's assembly, according to new research

Spontaneous robot dances highlight a new kind of order in active matter

Order and disorder in crystalline ice explained

AEROSPACE
Discovery boosts theory that life on Earth arose from RNA-DNA mix

Astronomers detect possible radio emission from exoplanet

Key building block for organic molecules discovered in meteorites

Device mimics life's first steps in outer space

AEROSPACE
Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery

Swedish space instrument participates in the search for life around Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.