Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
New understanding of how materials change when rapidly heated
by Staff Writers
Southampton UK (SPX) Apr 03, 2012


Behrad Gholipour led the team that provided the phase change materials and deposited them as very thin films. Credit: University of Southampton.

Collaboration between the University of Southampton and the University of Cambridge has made ground-breaking advances in our understanding of the changes that materials undergo when rapidly heated.

Using cutting edge equipment and specially designed MEM's sensors on loan from Mettler-Toledo, scientists from the University of Southampton's Optoelectronic Research Centre and the University of Cambridge's Department of Materials Science were able to probe the behaviour of phase change memory materials, the semiconductors that store information in the next generation of electronics, as they were heated at rates up to 10,000 degree C per second.

Insight and a detailed understanding of measurement results was provided by Professor Lindsay Greer, from the University of Cambridge's Department of Materials Science, whose analysis showed that crystal growth rates differed considerably from other materials such as glass and silicon and the behaviour of these materials on such rapid heating was not as expected.

The results, which are published this week in Nature Materials, show that crystal growth rates are much faster than we previously believed in these materials and that the growth behaviour is independent of the surroundings.

While it is not surprising that properties of materials change significantly when they are shrunk to nanoscale dimensions, we now have a method of directly screening materials for improved memory performance; this means faster, smaller and less power hungry smart phones, ipods and computers are one step closer.

Professor Dan Hewak from the University of Southampton, whose team, led by Behrad Gholipour, provided the phase change materials and deposited them as very thin films, comments:

"We have been studying novel glasses and phase change materials for two decades here at the Optoelectronics Research Centre. However, our understanding of what happens when these materials are heated, that is, their crystallization and melting behaviours, has been limited to heating rates of about 10 degrees C per minute using conventional thermal analysis.

In reality, in the memory devices we fabricate, heating rates are millions of times faster and it is reasonable to expect that in order to improve these devices, an understanding of their properties at the same heating rates they will be used is needed."

Writing in the same issue of Nature Materials, Professors Matthias Wuttig and Martin Salinga at RWTH Aachen University in Germany explain why this breakthrough is so important: "Jiri Orava (Cambridge University) and colleagues now provide a completely new insight in our understanding of the fast transformations that occur in the materials that make up today's memory devices.

Reading and writing of data in optical memory such as rewriteable compact discs (CD-RWs and DVDs) and emerging new electronic memory can take place at speeds of tens of nanoseconds but our understanding of what happens when these materials are heated is based on experiments where heating rates are much slower."

"Unravelling the mysteries of chocolate making, comprehending the formation of amethyst geodes, or producing advanced steels requires an understanding of the relevant crystallization phenomena."

.


Related Links
University of Southampton
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Ultrafast laser pulses shed light on elusive superconducting mechanism
Vancouver, Canada (SPX) Apr 02, 2012
An international team that includes University of British Columbia physicists has used ultra-fast laser pulses to identify the microscopic interactions that drive high-temperature superconductivity. In the experiment, to be outlined this Friday in the journal Science, electrons in a prototypical copper-oxide superconductor were excited by extremely short 100-femtosecond (0.0000000000001-se ... read more


TECH SPACE
Flying Formation - Around the Moon at 3,600 MPH

NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

Two New NASA LRO Videos: See Moon's Evolution, Take a Tour

TECH SPACE
The sounds of Mars and Venus are revealed for the first time

Dusty, Acidic Glaciers Could Explain Layered Deposits on Mars

Slight Drop Of Left-Front Wheel

'Mount Sharp' On Mars Links Geology's Past and Future

TECH SPACE
New Study Calls For Recognition of Private Property Claims in Space

Conservatives' trust in science has fallen dramatically since mid-1970s

First the smart phone, now the smart home

NASA Space Network to Begin New Design Phase For Ground Segment

TECH SPACE
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

TECH SPACE
Aerojet Propulsion Helps Deliver Astronaut Care Packages

Soyuz return from ISS set for April 27

European cargo vessel docks with space station

Beaming Success for ISS Fans

TECH SPACE
Space Launch System Program Completes Step One of Combined Milestone Reviews

Russian Proton-M Puts Military Satellite into Orbit

ORS SpaceLoft-6 launch to test reliability, durability of payloads in suborbital voyage

China launches French-made communication satellite

TECH SPACE
Getting to Know the Goldilocks Planet

Billions of Habitable Zone Rocky Planets Could be Orbiting Red Dwarf Stars

Runaway Planets Zoom at a Fraction of Light-Speed

Some orbits more popular than others in solar systems

TECH SPACE
New understanding of how materials change when rapidly heated

Northrop Grumman Conducts Air and Missile Defense Radar System Reviews

Honeycombs of magnets could lead to new type of computer processing

Facebook fans get to play out celebrity fantasies




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement