![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Oak Ridge TN (SPX) Jan 03, 2018
A novel approach to studying the viscosity of water has revealed new insights about the behavior of water molecules and may open pathways for liquid-based electronics. A team of researchers led by the Department of Energy's Oak Ridge National Laboratory used a high-resolution inelastic X-ray scattering technique to measure the strong bond involving a hydrogen atom sandwiched between two oxygen atoms. This hydrogen bond is a quantum-mechanical phenomenon responsible for various properties of water, including viscosity, which determines a liquid's resistance to flow or to change shape. While water is the most abundant substance on Earth, its behavior at a molecular level is not well understood. "Despite all what we know about water, it is a mysterious, atypical substance that we need to better understand to unlock its vast potential, particularly in information and energy technologies," said Takeshi Egami, University of Tennessee-ORNL Distinguished Scientist/Professor working through the Shull Wollan Center - a Joint Institute for Neutron Sciences, an ORNL-UT partnership. The team's study, published in Science Advances, demonstrated that it is possible to probe real-space, real-time dynamics of water and other liquids. Previous studies have provided snapshots of water's atomic structure, but little is known about how water molecules move. "The hydrogen bond has a strong effect on the dynamic correlation between molecules as they move through space and time, but so far the data, mostly by optical laser spectroscopy, yielded broad or 'hazy' results with unclear specificity," Egami said. For a clearer picture, the joint ORNL-UT team used an advanced X-ray technique known as inelastic X-ray scattering to determine molecular movement. They found that the dynamics of oxygen-to-oxygen bonding between water molecules is, surprisingly, not random but highly coordinated. When the bond between water molecules is disrupted, the strong hydrogen bonds work to maintain a stable environment over a specific period of time. "We found that the amount of time it takes for a molecule to change its 'neighbor' molecule determines the water's viscosity," Egami said. This new discovery would stimulate further studies on exerting control over the viscosity of other liquids. Egami views the current work as a springboard to more advanced research that will leverage neutron scattering techniques at the Spallation Neutron Source at ORNL, a DOE Office of Science User Facility, to further determine the origin of viscosity and other dynamic properties of liquids. The researchers' approach could also be used to characterize the molecular behavior and viscosity of ionic, or salty, liquids and other liquid substances, which would aid in the development of new types of semiconductor devices with liquid electrolyte insulating layers, better batteries and improved lubricants.
![]() Warsaw, Poland (SPX) Jan 02, 2018 The emerging domain of parallelized quantum information processing opens up new possibilities for precise measurements, communication and imaging. Precise control of multiple stored photons allows efficient handling of this subtle information in large amounts. In the Quantum Memories Laboratory at Faculty of Physics, University of Warsaw a group of laser-cooled atoms has been used as a mem ... read more Related Links Oak Ridge National Laboratory Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |