. 24/7 Space News .
INTERNET SPACE
New quantum 'stopwatch' can improve imaging technologies
by Staff Writers
Boulder CO (SPX) Aug 25, 2021

Demonstration of ToF 3D imaging. (a) Photograph of the sample. (b) 3D image obtained using TM-TCSPC. (c) 3D image obtained using conventional TCSPC. (d) Comparison of the height profiles with TM-TCSPC (red trace) and conventional TCSPC (black trace) along the white dashed line.

Researchers at the University of Colorado Boulder have designed one of the most precise stopwatches yet-not for timing Olympic sprinters and swimmers but for counting single photons, or the tiny packets of energy that make up light.

The team's invention could lead to big improvements in a range of imaging technologies-from sensors that map out entire forests and mountain ranges to more detailed devices that can diagnose human diseases like Alzheimer's and cancer. The group published its results this week in the journal Optica.

Bowen Li, lead author of the new study, said that the research focuses on a widely applied technology called time-correlated single photon counting (TCSPC). It works a bit like the timers you see at the Olympics: Scientists first shine a laser light at a sample of their choice, from individual proteins all the way up to a massive geologic formation, then record the photons that bounce back to them. The more photons researchers collect, the more they can learn about that object.

"TCSPC gives you the total number of photons. It also times when each photon hits your detector," said Li, a postdoctoral researcher in the Department of Electrical, Computer and Energy Engineering (ECEE) at CU Boulder. "It works like a stopwatch."

Now, that stopwatch has gotten better than ever. Using an ultrafast optics tool called a "time lens," Li and his colleagues show that they can measure the arrival of photons with a precision that's more than 100 times better than existing tools.

Shu-Wei Huang, corresponding author of the new study, added that the group's quantum time lens works with even the cheapest TCSPC devices available on the market.

"We can add this modification to almost any TCSPC system to improve its single-photon timing resolution," said Huang, assistant professor of ECEE.

The research is part of the newly-launched, $25 million Quantum Systems through Entangled Science and Engineering (Q-SEnSE) center led by CU Boulder.

Photo finish
TCSPC may not be a household name, Huang said. But the technology, which was first developed in 1960, has revolutionized how humans see the world. These photon counters are important components of lidar (or light detection and ranging) sensors, which researchers use to create geologic maps. They also show up in a more small-scale imaging approach called fluorescence lifetime microscopy. Doctors employ the technique to diagnose some illnesses like macular degeneration, Alzheimer's disease and cancer.

"People shine a pulse of light on their sample then measure how long it takes to emit a photon," Li said. "That timing tells you the property of the material, such as the metabolism of a cell."

Traditional TCSPC tools, however, can only measure that timing down to a certain level of precision: If two photons arrive at your device too close together-say, 100 trillionths of a second or less apart-the detector records them as a single photon. It's a bit like two sprinters coming to a photo finish during a 100-meter dash.

Such tiny inconsistencies may sound like a quibble, but Li noted that they can make a big difference when trying to get a detailed look at incredibly small molecules.

Time lenses
So he and his colleagues decided to try to solve the problem using what scientists call a "time lens."

"In a microscope, we use optical lenses to magnify a small object into a big image," Li said. "Our time lens works in a similar way but for time."

To understand how that time distortion works, picture two photons as two runners racing neck-and-neck-so close that the Olympics timekeeper can't tell them apart. Li and his colleagues pass both of those photons through their time lens, which is made up of loops of silica fibers. In the process, one of the photons slows down, while the other speeds up. Instead of a close race, there's now a large gap between the runners, one that a detector can record.

"The separation between the two photons will be magnified," Li said.

And, the team discovered, the strategy works: TCSPC devices with built-in time lenses can distinguish between photons that arrive at a detector with a gap of several hundred quadrillionths of a second-orders of magnitude better than what normal devices can achieve.

The researchers still have some work to do before time lenses become common in scientific labs. But they hope that their tool will one day allow humans to view objects, from the very small to the very large-all with a clarity that was previously impossible.

Other coauthors on the new study include ECEE graduate students Jan Bartos and Yijun Xie.

Research Report: "Time-magnified photon counting with 550-fs resolution"


Related Links
Department of Electrical, Computer and Energy Engineering (ECEE) at CU Boulder
Satellite-based Internet technologies


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


INTERNET SPACE
TikTok ramps up privacy protection for teens
San Francisco (AFP) Aug 12, 2021
TikTok became the latest tech company Thursday to announce tighter protections for teenagers as social media platforms come under increased scrutiny over their privacy safeguards. The short video-sharing app will roll out a number of features in the coming months, including a default curb for 16 and 17-year-olds on in-app messaging unless it is switched to a different setting. Under 16s will see a pop-up message when they publish their first video, asking them to choose who can watch. And u ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
Samsung announces $205 billion investment plan

Northrop Grumman set to launch 16th cargo delivery mission to ISS

NASA, Boeing to Move Starliner to Production Facility for Propulsion System Evaluation

NASA mulls how to dispose of International Space Station

INTERNET SPACE
Musk says next Moon landing will probably be sooner than in 2024

Boeing to remove Starliner from rocket, months-long delay expected

Boeing Starliner launch faces further delays

Hermeus fully-funded to flight with US Air Force Partnership

INTERNET SPACE
NASA's Ingenuity helicopter completes 12th Mars flight

Trio of orbiters shows small dust storms help dry out Mars

Aviation Week awards NASA's Ingenuity Mars Helicopter with laureate

Is Curiosity exploring surface sediments or lake deposits

INTERNET SPACE
Chinese astronauts to conduct extravehicular activities for second time

Mars mission outcomes to advance space research

Chinese rocket for Tianzhou-3 mission arrives at launch site

Tianhe astronauts use free time to watch ping-pong and exercise

INTERNET SPACE
Phantom Space acquires Micro Aerospace Solutions

Business growth scheme open to next group of space entrepreneurs

BlackSky to expand constellation with three back-to-back missions

Skykraft to begin launch of space-based air traffic management constellation

INTERNET SPACE
Facebook unveils virtual reality 'workrooms'

A technique to predict radiation risk during ISS Missions

DRCongo to review China Moly copper-cobalt mine deal

Department of Energy invests in novel research in high-performance algorithms

INTERNET SPACE
Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

Small force, big effect: How the planets could influence the sun

Astronomers find evidence of possible life-sustaining planet

INTERNET SPACE
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.