. 24/7 Space News .
ENERGY TECH
New fuel cell design powered by graphene-wrapped nanocrystals
by Staff Writers
Berkeley CA (SPX) Mar 17, 2016


Thin sheets of graphene oxide (red sheets) have natural, atomic-scale defects that allow hydrogen gas molecules to pass through while blocking larger molecules such as oxygen (O2) and water (H2O). Berkeley Lab researchers encapsulated nanoscale magnesium crystals (yellow) with graphene oxide sheets to produce a new formula for metal hydride fuel cells. Image courtesy Jeong Yun Kim. For a larger version of this image please go here.

Hydrogen is the lightest and most plentiful element on Earth and in our universe. So it shouldn't be a big surprise that scientists are pursuing hydrogen as a clean, carbon-free, virtually limitless energy source for cars and for a range of other uses, from portable generators to telecommunications towers - with water as the only byproduct of combustion.

While there remain scientific challenges to making hydrogen-based energy sources more competitive with current automotive propulsion systems and other energy technologies, researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new materials recipe for a battery-like hydrogen fuel cell - which surrounds hydrogen-absorbing magnesium nanocrystals with atomically thin graphene sheets - to push its performance forward in key areas.

The graphene shields the nanocrystals from oxygen and moisture and contaminants, while tiny, natural holes allow the smaller hydrogen molecules to pass through. This filtering process overcomes common problems degrading the performance of metal hydrides for hydrogen storage.

These graphene-encapsulated magnesium crystals act as "sponges" for hydrogen, offering a very compact and safe way to take in and store hydrogen. The nanocrystals also permit faster fueling, and reduce the overall "tank" size.

"Among metal hydride-based materials for hydrogen storage for fuel-cell vehicle applications, our materials have good performance in terms of capacity, reversibility, kinetics and stability," said Eun Seon Cho, a postdoctoral researcher at Berkeley Lab and lead author of a study related to the new fuel cell formula, published recently in Nature Communications.

In a hydrogen fuel cell-powered vehicle using these materials, known as a "metal hydride" (hydrogen bound with a metal) fuel cell, hydrogen gas pumped into a vehicle would be chemically absorbed by the magnesium nanocrystaline powder and rendered safe at low pressures.

Jeff Urban, a Berkeley Lab staff scientist and co-author, said, "This work suggests the possibility of practical hydrogen storage and use in the future. I believe that these materials represent a generally applicable approach to stabilizing reactive materials while still harnessing their unique activity - concepts that could have wide-ranging applications for batteries, catalysis, and energetic materials."

The research, conducted at Berkeley Lab's Molecular Foundry and Advanced Light Source, is part of a National Lab Consortium, dubbed HyMARC (Hydrogen Materials - Advanced Research Consortium) that seeks safer and more cost-effective hydrogen storage, and Urban is Berkeley Lab's lead scientist for that effort.

The U.S. market share for all electric-drive vehicles in 2015, including full-electric, hybrids and plug-in hybrid vehicles, was 2.87 percent, which amounts to about 500,000 electric-drive vehicles out of total vehicle sales of about 17.4 million, according to statistics reported by the Electric Drive Transportation Association, a trade association promoting electric-drive vehicles.

Hydrogen-fuel-cell vehicles haven't yet made major in-roads in vehicle sales, though several major auto manufacturers including Toyota, Honda, and General Motors, have invested in developing hydrogen fuel-cell vehicles. Indeed, Toyota released a small-production model called the Mirai, which uses compressed-hydrogen tanks, last year in the U.S.

A potential advantage for hydrogen-fuel-cell vehicles, in addition to their reduced environmental impact over standard-fuel vehicles, is the high specific energy of hydrogen, which means that hydrogen fuel cells can potentially take up less weight than other battery systems and fuel sources while yielding more electrical energy.

A measure of the energy storage capacity per weight of hydrogen fuel cells, known as the "gravimetric energy density," is roughly three times that of gasoline. Urban noted that this important property, if effectively used, could extend the total vehicle range of hydrogen-based transportation, and extend the time between refueling for many other applications, too.

More R and D is needed to realize higher-capacity hydrogen storage for long-range vehicle applications that exceed the performance of existing electric-vehicle batteries, Cho said, and other applications may be better suited for hydrogen fuel cells in the short term, such as stationary power sources, forklifts and airport vehicles, portable power sources like laptop battery chargers, portable lighting, water and sewage pumps and emergency services equipment.

Cho said that a roadblock to metal hydride storage has been a relatively slow rate in taking in (absorption) and giving out (desorption) hydrogen during the cycling of the units. In fuel cells, separate chemical reactions involving hydrogen and oxygen produce a flow of electrons that are channeled as electric current, creating water as a byproduct.

The tiny size of the graphene-encapsulated nanocrystals created at Berkeley Lab, which measure only about 3-4 nanometers, or billionths of a meter across, is a key in the new fuel cell materials' fast capture and release of hydrogen, Cho said, as they have more surface area available for reactions than the same material would at larger sizes.

Another key is protecting the magnesium from exposure to air, which would render it unusable for the fuel cell, she added.

Working at The Molecular Foundry, researchers found a simple, scalable and cost-effective "one pan" technique to mix up the graphene sheets and magnesium oxide nanocrystals in the same batch. They later studied the coated nanocrystals' structure using X-rays at Berkeley Lab's Advanced Light Source. The X-ray studies showed how hydrogen gas pumped into the fuel cell mixture reacted with the magnesium nanocrystals to form a more stable molecule called magnesium hydride while locking out oxygen from reaching the magnesium.

"It is stable in air, which is important," Cho said.

Next steps in the research will focus on using different types of catalysts - which can improve the speed and efficiency of chemical reactions - to further improve the fuel cell's conversion of electrical current, and in studying whether different types of material can also improve the fuel cell's overall capacity, Cho said.

Research paper: Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Hydrogen Materials AdvancedResearch Consortium
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Catalyst fabrication method may boost fuel cell development
Fukuoka, Japan (SPX) Mar 16, 2016
The successful future of fuel cells relies on improving the performance of the catalysts they use. Gold nanoparticles have been cited as an ideal solution, but creating a uniform, useful catalyst has proven elusive. However, a team of researchers at Kyushu University's International Institute for Carbon-Neutral Energy Research (I2CNER) devised a method for using a new type of catalyst support. ... read more


ENERGY TECH
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

ENERGY TECH
ExoMars probe imaged en route to Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

Europe's New Mars Mission Bringing NASA Radios Along

ENERGY TECH
Space travel rules needed within 5 years: UN

Jacobs Joins Coalition for Deep Space Exploration

Space Race Competition helps turn NASA Tech into new products

Broomstick flying or red-light ping-pong? Gadgets at German fair

ENERGY TECH
China to establish first commercial rocket launch company

China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

ENERGY TECH
Grandpa astronaut to break Scott Kelly's space record

Three new members join crew of International Space Station

Three new crew, including US grandpa, join space station

Space station astronauts ham it up to inspire student scientists

ENERGY TECH
ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

Launch of Dragon Spacecraft to ISS Postponed Until April

ISRO launches PSLV C32, India's sixth navigation satellite

ENERGY TECH
VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

Astronomers discover two new 'hot Jupiter' exoplanets

ENERGY TECH
Outsourcing crystal growth...to space

International research team achieves controlled movement of skyrmions

Light helps the transistor laser switch faster

UA's Space Expertise Seen as Key for US Security









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.