. 24/7 Space News .
TIME AND SPACE
New form of crystalline ice may help learn about hydrogen bonds
by Brooks Hays
Washington DC (UPI) Feb 18, 2021

Using neutron diffraction, scientists have characterized the crystalline structure of a newly named ice form, ice XIX.

Researchers described the exotic ice form in a new paper, published Thursday in the journal Nature Communications.

Almost all naturally occurring frozen water on planet Earth, whether ice or snow, exists in the hexagonal crystal form called ordinary ice -- or ice one. Common ice is characterized by its six-membered rings of oxygen atoms.

But as scientists have discovered over the last century, iced formed under various combinations of extreme pressures and temperatures develops different kinds of crystalline structures.

In the last 100 years, scientists have described a total of 18 different ice forms, each with different arrangements of oxygen and hydrogen atoms -- and differences in density.

The differing ice forms, including the new one, could help to understand hydrogen bonds -- which is relevant to a variety of scientific studies on Earth, as well as other planets -- researchers said.

"The density is different if the arrangement of oxygen atoms is different, something known as topology," study corresponding author Thomas Loerting told UPI in an email.

"Hexagonal ice is famous for its six-membered rings. The higher density of high-pressure ice phases can be reached either by compressing and distorting the hydrogen bonds or by changing the network topology," said Loerting, a researcher with the Institute of Physical Chemistry at the University of Innsbruck in Austria.

Even though ice forms are often characterized by the shape and size of their rings of oxygen atoms, as Loerting explained, ice's topological diversity is largely a reflection hydrogen's dynamism.

"The pattern of hydrogen atoms can either be random or it can follow a pattern. In ice VI the H-atoms are random, and it is called a disordered, frustrated ice," Loerting said.

"In ice XV and in ice XIX the H-atoms are aligned according to a pattern -- following symmetry. They are called ordered. Whether or not the H-atoms are ordered makes a huge difference," Loerting said.

Whether or not an ice form's hydrogen atoms are ordered or not has a significant effect on the ice's physical and electrical properties.

"H-disordered phases like common hexagonal ice can usually be deformed plastically -- this is the reason why glaciers flow," Loerting said. "H-ordered ices, by contrast, are extremely brittle and cannot be deformed plastically."

Scientists in search of new ice forms practice what's called crystallography.

Researchers precisely manipulate the ice formation process, ramping up the pressure or slowly heating ice frozen at extremely frigid temperatures.

After tweaking the ice formation process, scientists analyze the density of their frozen product, as well as the precise arrangement of the O and H atoms on a microscopic level.

About a decade ago, researchers at Innsbruck produced an ordered variant of ice VI, yielding what came to be named ice XV.

More recently, scientists tweaked the formation process of ice VI, cooling it rapidly to yield what scientists estimated was a new ordered variant of the parent ice -- a second ordered variant of the same parent ice.

To be certain, scientists needed to use neutron diffraction, but the imaging technique only works with ice formed by heavy water -- water featuring deuterium, a heavier hydrogen isotope. Frozen heavy water is known as deuterated ice.

Unfortunately, adding heavy hydrogen alters the ice formation process, complicating efforts to reproduce the new ice form.

Researchers realized they could minimize the disruption by mixing a tiny bit of normal water with heavy water before repeating their rapid-freezing process. The technique worked, and scientists were able to confirm the new arrangement of hydrogen atoms in what suggests is a newest ice form -- ice XIX.

"This is the first example in ice physics, in which a second ordered polymorph related to the same parental disordered phase could be realized in experiment," Loerting said.

As such, scientists will now be able to observe the transition between two ordered ice forms in a single experiment.

Since the 1980s, researchers at Innsbruck have discovered six novel ice forms, four crystalline forms and two amorphous forms.

Scientists spend time studying, imaging and discovering new ice forms because they can help researchers better understand hydrogen bonds.

"People from theory and molecular simulations have huge difficulties in modelling the hydrogen bond properly, and many models especially fail on reproducing the known ice polymorphs," Loerting said. "A new ice forms thus helps to improve functionals and potentials used to model and understand the hydrogen bond."

Understanding the density and properties of different ice phases is also essential to the study of celestial bodies and their icy cores and mantles -- bodies like the ice giants Uranus and Neptune or the icy moons Europa, Io, Ganymede and Titan.

On Earth, temperature and pressure doesn't vary all that much, but in other parts of the solar systems, unusual conditions can produce more exotic ice forms.

"There is a broad interest about ices from many fields, crystallographs, astrophysics, theoretical chemistry, environmental chemistry, etc. -- and this means the race for ice XX has already started," Loerting said.


Related Links
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Scientists manipulate magnets at the atomic scale
Lancaster UK (SPX) Feb 15, 2021
Fast and energy-efficient future data processing technologies are on the horizon after an international team of scientists successfully manipulated magnets at the atomic level. Physicist Dr Rostislav Mikhaylovskiy from Lancaster University said: "With stalling efficiency trends of current technology, new scientific approaches are especially valuable. Our discovery of the atomically-driven ultrafast control of magnetism opens broad avenues for fast and energy-efficient future data processing techno ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Who Controls Space

Astronauts training for space station missions

Space for all is this student's goal

NASA fears gap in astronaut crew at multibillion-dollar space station

TIME AND SPACE
Russia plans at least 10 launches from Baikonur in 2021

DLR ready to test first upper stage for Ariane 6

Kremlin 'interested' in Elon Musk-Putin conversation

Space Nuclear Propulsion Technologies central to future of Mars Exploration

TIME AND SPACE
Airbus space technology reaches Mars

Mars rover mission could drive research for decades to come

Tuning in for a precision landing on Mars on Feb 18

Skoltech's recent achievement takes us one step closer to Mars

TIME AND SPACE
Chinese tracking vessel sets sail for monitoring missions in Indian Ocean

China's 'space dream': A Long March to the Moon and beyond

Three generations dedicated to space program

China's space station core module, cargo craft pass factory review

TIME AND SPACE
RUAG Space positions itself for the future

First Airbus Eurostar Neo satellite is born

Axiom Space raises $130M in Series B funding

SpaceX launches Starlink satellites, loses booster in sea

TIME AND SPACE
Falling to Earth takes a long time

Northrop Grumman's SharkSat Payload Showcases Agility from the Ground to Orbit

Arch Mission Foundation announces first in series of Earth Archives

Purdue to co-lead DoD-funded project to advance adoption of lead-free electronics

TIME AND SPACE
On the quest for other Earths

NASA's TESS discovers new worlds in a river of young stars

Lasers reveal the secret interior of rocky exoplanets

A new way of forming planets

TIME AND SPACE
Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.