Subscribe free to our newsletters via your
. 24/7 Space News .

New filter could advance terahertz data transmission
by Staff Writers
Salt Lake City UT (SPX) Mar 02, 2015

University of Utah electrical and computer engineering professor Ajay Nahata, left, and U graduate student Andrew Paulsen hold up a terahertz frequency filter made through a process they developed with an inkjet printer. They have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that could allow cell-phone users and Internet surfers to download data a thousand times faster than today. Image courtesy Dan Hixson / University of Utah College of Engineering.

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that could allow cellphone users and Internet surfers to download data a thousand times faster than today. Once the filter is designed, it can be fabricated using an off-the-shelf inkjet printer.

Filtering out different frequencies will be important in the development of the terahertz spectrum for communications. By filtering out unwanted frequencies users can download information from the Internet or talk on a cellphone, for example, with less noise or interfering signals.

The terahertz range refers to the band of frequencies between infrared light and radio waves. Engineers consider it the next frontier in communications because of the enormous potential for boosting data transmission rates.

The technology also is being studied for next-generation medical imaging and airport scanners. Terahertz rays, or T-rays, can pass through many materials without using ionizing radiation, which makes them attractive for use in medical imaging and security screening devices.

This new methodology for creating filters was published in a paper Feb. 27 in The Optical Society's online journal, Optica.

"Your cellphone operates at a frequency of 2.4 gigahertz. A terahertz is a thousand gigahertz," said graduate student Andrew Paulsen, who co-authored the paper with U electrical and computer engineering professor, Ajay Nahata. "If we could effectively use the terahertz spectrum for communications, we could have a thousand times more bandwidth than we currently do."

Paulsen and Nahata discovered that by creating certain computer-generated designs using engineering software called MATLAB and printing them on a plastic sheet via a regular inkjet printer, they could create a filter that allows certain terahertz frequencies to pass through while blocking others out. The printer uses silver-metal ink similar to what is used for the production of circuit boards and tiny antennas.

By using a terahertz generator, which shoots out an invisible beam of light, researchers can measure the frequencies as the beam passes through the filter. The dimensions and geometry of the printed designs, which can look like a wavy bull's-eye for example, determine which frequencies get through and to what extent.

This method is an important step in utilizing the terahertz spectrum for commercial use, possibly as the basis for the next "5G" network for cellphones. If cellphones on a current "4G" network can download data at 10 to 15 megabits per second, terahertz technology can potentially send data back and forth at terabits per second (or millions of megabits per second).

Using filters in such a network will be a vital component because it will be necessary to separate frequencies in order to create multiple communication channels. Many wireless devices use filters to single out frequencies, including Wi-Fi routers, televisions and cellphones.

It might be another 10 years before consumers are using Wi-Fi routers or cellphones with terahertz technology, but communications companies could use it for their network backones much sooner.

A current limitation of terahertz frequencies is that they require line of sight and can transmit only over short distances. But some researchers have already achieved lightning download speeds with wireless terahertz chips, and others are interested in broadcasting super-high-definition 4K television signals over the air with cameras that use the terahertz spectrum.

"Terahertz technology is something there is a lot of interest in," Nahata said. "I guarantee that people will come up with new ideas that can use all of that available bandwidth."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
University of Utah
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Japan's NTT to buy German data centre operator: report
Tokyo (AFP) Feb 28, 2015
Japanese telecom giant NTT Communications is looking to acquire German data centre operator e-shelter, as it seeks to cash in on growing demand in Europe, a newspaper reported Saturday. Data centres are becoming crucial for IT companies operating in Europe, with many of the continent's consumers wary of US surveillance in the wake of US whistle-blower Edward Snowden's revelations. US tec ... read more

Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

How Can We Protect Mars From Earth, While Searching For Life

The Search For Volcanic Eruptions On Mars Reaches The Next Level

Using Curiosity to Search for Life

Curiosity Self-Portrait at 'Mojave' Site on Mount Sharp

Water pools in US astronaut's helmet after spacewalk

Korean tech start-ups offer life beyond Samsung

Fast visas and dim sum: Spain seeks to attract Chinese tourists

Industry: Risk aversion costs more than 'fast failure'

More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

Russia to use International Space Station till 2024

NASA preparing to reassemble International Space Station

Spacewalking 'cable guys' wrap up work outside station

Space Station 3-D Printed Items, Seedlings Return in the Belly of a Dragon

Soyuz Installed at Baikonur, Expected to Launch Wednesday

Leaders share messages, priorities at AFA Symposium

Moog offers "SoftRide" for enhanced spacecraft protection during launch

Russian-Ukrainian Satan Rocket to Launch South Korean Satellite as Planned

The mystery of cosmic oceans and dunes

Laser 'ruler' holds promise for hunting exoplanets

Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

Japan's NTT to buy German data centre operator: report

Moving molecule writes letters

New filter could advance terahertz data transmission

A simple way to make and reconfigure complex emulsions

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.