. 24/7 Space News .
STELLAR CHEMISTRY
New ALMA receivers achieve first light, set record for observational capabilities
by Staff Writers
Charlottesville VA (SPX) Sep 09, 2021

Band 1 cold cartridge assemblies.

new set of receivers installed on antennas at the Atacama Large Millimeter/submillimeter Array (ALMA) have achieved first light. With it, they set a new record for the longest wavelengths visible with the radio array. The achievement has opened a window on the Universe previously inaccessible at the telescope, thanks to an international team of engineers, including engineers from the National Radio Astronomy Observatory (NRAO).

Scientists achieved first light with the Band 1 receiver on August 14, 2021, with successful observations of the edge of the Moon, followed by the first successful interferometry test observations using two Band 1 receivers on August 17, and acquisition of the first radio spectrum on August 27. During the tests, scientists observed and successfully received signals from multiple celestial objects, including Solar System planets Venus and Mars, Orion KL-a cluster of stars within a molecular cloud, VY Canis Majoris-a red hypergiant variable pulsating star, and quasar 3C 279.

ALMA observes the Universe over a wide range of radio wavelengths within the millimeter and submillimeter range of the electromagnetic spectrum with the help of specialized receivers. ALMA's 66 antennas were previously equipped with eight different receivers, operating at wavelengths from 3.6mm (ALMA Band 3) to 0.3mm (ALMA Band 10). These new Band 1 receivers are sensitive to radio waves between 6 and 8.5mm in length, expanding the capability of the antennas to "see" more wavelengths of light from distant cosmic sources.

"This new band will help scientists to understand better how disks of dust that we see around many young stars grow into planets. It will also give us much more detailed images of hot plasma in galaxy clusters and around quasars, and help us to detect distant, dust-obscured galaxies that are as yet unknown," said Brian Mason, NRAO Staff Scientist. "ALMA's location in the southern hemisphere, combined with its large number of antennas and these new receivers, will enable unprecedented centimeter-wavelength views of celestial objects in our own galaxy and beyond."

The wavelength sensitivity of a radio astronomy receiver is only as good as the components it is made from. Two of the most critical components of Band 1, the low noise amplifiers (LNAs) and the local oscillators (LOs), were built at the NRAO's Central Development Laboratory (CDL).

"LNAs play a key role in maximizing the sensitivity of receivers on ALMA and any other radio astronomy receivers and LOs allow it to be tuned," said Bert Hawkins, Director of CDL. "Design and production of these two critical subsystems require highly specialized knowledge and skills. That's where CDL comes in."

Low noise amplifiers are the active component closest to the antenna in a radio astronomy receiver, and as a result, play a critical role in their operation. "The role of low noise amplifiers is to set the noise performance of the overall receiver, so it is an important piece of the system," said Hawkins. "To do this, it has to add very little noise to the system, have high gain, and have an adequate dynamic range over the wavelengths being observed, and doing this is a specialty of our LNA team at CDL."

Local oscillators produce signals that, when combined with amplified signals from space, convert the signals down to lower frequencies. "The best way to understand a local oscillator is that it allows us to take signals from space, which are embedded with scientifically useful information but are at frequencies too high to further process, and convert them down to frequencies where we can filter, digitize, and process to form an image without corrupting the useful scientific information within," said Hawkins.

"The art of building a good local oscillator is to create a device that produces a strong, noise-free, tunable signal-yet another specialty of CDL. In fact, we have built all the LOs for ALMA."

The development of Band 1 was led by Taiwan's Academic Sinica Institute of Astronomy and Astrophysics (ASIAA), with support of an international team comprised of NRAO, the National Astronomical Observatory of Japan (NAOJ), the Herzberg Institute of Astrophysics in Canada, the National Chung-Shan Institute of Science and Technology (NCSIST) in Taiwan, and the University of Chile. The University of Chile assisted with developing and producing optical elements for the Band 1 receivers, including lenses and horn antennas.

Previously, CDL developed ALMA's Band 6 receivers, which are sensitive to radio waves between 1.1 and 1.4mm in length (frequencies between 211 to 275 GHz). Band 6 is one of the most scientifically productive receivers used on ALMA.


Related Links
National Radio Astronomy Observatory
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Ariane 5 elements for Webb launch reach Europe's Spaceport
Kourou, French Guiana (ESA) Sep 08, 2021
Major elements of the Ariane 5 rocket to launch the James Webb Space Telescope arrived safely in Kourou, French Guiana from Europe on 3 September 2021. The rocket's fairing, upper stage and core stage have been unloaded from the MN Toucan vessel at Pariacabo harbour and transported by special convoy to Europe's Spaceport about 3 km away from the wharf. Webb will be stowed folded inside the fairing built by RUAG Space in Emmen, Switzerland. This ogive-shaped fairing at the top of Ariane 5 is ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
German ESA astronaut Matthias Maurer is ready for his first ISS mission - 'Cosmic Kiss'

Dates set for Space Station change of command as Franco-German relations awarded Media prize

Safeguarding clean water for spaceflight missions

Next generation of Orion spacecraft in production for future Artemis missions

STELLAR CHEMISTRY
NASA awards launch services contract for GOES-U Mission

DLR agrees cooperation with Spanish start-up Pangea Aerospace

Winds delay South Australian launch attempt

Space industry grapples with COVID-19-related oxygen fuel shortage

STELLAR CHEMISTRY
NASA's Perseverance rover collects puzzle pieces of Mars' history

Buttes on Mars may serve as radiation shelters

NASA's Perseverance rover collects first rock sample

Mars rocks collected by Perseverance boost case for ancient life

STELLAR CHEMISTRY
Space exploration priority of nation's sci-tech agenda

New extravehicular pump ensures stable operation of China's space station

Chinese astronauts out of spacecraft for second time EVA

China's astronauts make spacewalk to upgrade robotic arm

STELLAR CHEMISTRY
China launches Zhongxing-9B satellite

Hughes and OneWeb announce agreements for low earth Orbit satellite service in US and India

Orbit MPT30-Ku 12" Airborne SATCOM Terminal receives Intelsat FlexAir for government qualification

Eutelsat completes OneWeb equity investment

STELLAR CHEMISTRY
China develops sustainable development satellite

Space junk traffic dangers to be tackled by first-of-its-kind research centre in UK

D-Orbit UK signs contract with ESA for development of debris removal technology

Global computing's carbon footprint is bigger than previously estimated

STELLAR CHEMISTRY
Earthlike planets in other solar systems? Look for moons

Antennas searching for ET threatened by wildfire

The first cells might have used temperature to divide

Cold planets exist throughout our Galaxy, even in the Galactic bulge

STELLAR CHEMISTRY
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.