. 24/7 Space News .
NANO TECH
'Naturally insulating' material emits pulses of superfluorescent light at room temperature
by Staff Writers
Raleigh NC (SPX) Sep 06, 2022

The process for achieving superflorescence at room temperature is shown in a new paper in Nature Photonics.

Researchers looking to synthesize a brighter and more stable nanoparticle for optical applications found that their creation instead exhibited a more surprising property: bursts of superfluorescence that occurred at both room temperature and regular intervals. The work could lead to the development of faster microchips, neurosensors, or materials for use in quantum computing applications, as well as a number of biological studies.

Superfluorescence occurs when atoms within a material synchronize and simultaneously emit a short but intense burst of light. The property is valuable for quantum optical applications, but extremely difficult to achieve at room temperatures and for intervals long enough to be useful.

The material in question - lanthanide-doped upconversion nanoparticle, or UCNP - was synthesized by the research team in an effort to create a "brighter" optical material. They produced hexagonal ceramic crystals ranging from 50 nanometers (nm) to 500 nm in size and began testing their lasing properties, which resulted in several impressive breakthroughs.

The researchers were initially looking for lasing, where light emitted from one atom stimulates another to emit more of the same light. However, they instead found superfluorescence, where first all the atoms align, then emit together.

"When we excited the material at different laser intensities, we found that it emits three pulses of superfluorescence at regular intervals for each excitation," says Shuang Fang Lin, associate professor of physics at North Carolina State University and co-corresponding author of the research. "And the pulses don't degrade - each pulse is 2 nanoseconds long. So not only does the UCNP exhibit superfluorescence at room temperatures, it does so in a way that can be controlled."

Room temperature superfluorescence is hard to achieve because it is difficult for the atoms to emit together without being 'kicked' out of alignment by the surroundings. In a UCNP, however, the light comes from electron orbitals 'buried' beneath other electrons, which act as a shield and allow superfluorescence even at room temperature.

Additionally, UCNP's superfluorescence is technologically exciting because it is anti-Stokes shifted, meaning that the emitted wavelengths of light are shorter and higher energy than the wavelengths that initiate the response.

"Such intense and rapid anti-Stokes shift superfluorescence emissions are perfect for numerous pioneering materials and nanomedicine platforms," says Gang Han, professor of biochemistry and molecular biotechnology at University of Massachusetts Chan Medical School and co-corresponding author of the research. "For example, the UCNPs have been widely used in biological applications ranging from background noise-free biosensing, precision nanomedicine and deep-tissue imaging, to cell biology, visual physiology, and optogenetics.

"However, one challenge to current UCNP applications is their slow emission, which often makes detection complex and suboptimal. But the speed of anti-Stokes shift superfluoresence is a complete game changer: 10,000 times faster than the current method. We believe that this superfluorescence nanoparticle provides a revolutionary solution to bioimaging and phototherapies that await a clean, rapid and intensive light source."

UCNP's unique qualities could lead to its use in numerous applications.

"First, room temperature operation makes applications much easier," Lim says. "And at 50 nm, this is the smallest superfluorescent media currently in existence. Since we can control the pulses, we could use these crystals as timers, neurosensors or transistors on microchips, for example. And bigger crystals could give us even better control over the pulses."

Research Report:"Room Temperature Upconverted Superfluorescence"


Related Links
North Carolina State University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


NANO TECH
Making nanodiamonds out of bottle plastic
Dresden, Germany (SPX) Sep 05, 2022
What goes on inside planets like Neptune and Uranus? To find out, an international team headed by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the University of Rostock and France's Ecole Polytechnique conducted a novel experiment. They fired a laser at a thin film of simple PET plastic and investigated what happened using intensive laser flashes. One result was that the researchers were able to confirm their earlier thesis that it really does rain diamonds inside the ice giants at the periphe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
NASA, Axiom Space to launch second private astronaut mission to ISS in 2023

NASA repairs issue with Voyager 1 space probe

NASA awards contract to demonstrate trash compacting system for ISS

Boeing eyes February for space capsule's first crewed flight

NANO TECH
NASA Moon rocket ready for second attempt at liftoff

NASA says weather, SLS rocket look good for Artemis I launch on Saturday

NASA scrubs launch of giant Moon rocket, may try again Friday

New launch attempt Saturday for NASA's Moon rocket: official

NANO TECH
MIT's MOXIE experiment reliably produces oxygen on Mars

An Unexpected Stop during Sols 3580-3581

MAVEN and EMM make first observations of patchy proton aurora at Mars

A Whole New World - Sols 3578-3579

NANO TECH
Plant growth in China's space lab in good condition

Energy particle detector helps Shenzhou-14 crew conduct EVAs

China conducts spaceplane flight test

103rd successful rocket launch breaks record

NANO TECH
Space tech: In Jilin, they build satellites

SpaceX and T-Mobile unveil satellite plan to end cellphone 'dead zones'

Introducing Huginn

T-Mobile Takes Coverage Above and Beyond With SpaceX

NANO TECH
Game on at Gamescom

Steel sector cracks on Ukraine, energy price spikes

Selfridges targets 'circular' sales for almost half its goods

China's Tencent ups investment in France's Ubisoft

NANO TECH
JWST makes first unequivocal detection of carbon dioxide in an exoplanet atmosphere

An extrasolar world covered in water

Webb detects carbon dioxide in exoplanet atmosphere

Webb telescope finds CO2 for first time in exoplanet atmosphere

NANO TECH
NASA's Juno Mission Reveals Jupiter's Complex Colors

The PI's Perspective: Extending Exploration and Making Distant Discoveries

Uranus to begin reversing path across the night sky on Wednesday

Underwater snow gives clues about Europa's icy shell









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.