. 24/7 Space News .
NANO TECH
Nanostructures made of pure gold
by Staff Writers
Vienna, Austria (SPX) Nov 08, 2016


Nanostructure made of gold. Image courtesy TU Wien. For a larger version of this image please go here.

The idea is reminiscent of the ancient alchemists' attempts to create gold from worthless substances: Researchers from TU Wien (Vienna) have discovered a novel way to fabricate pure gold nanostructures using an additive direct-write lithography technique.

An electron beam is used to turn an auriferous organic compound into pure gold. This new technique can now be used to create nanostructures, which are needed for many applications in electronics and sensor technology. Just like with a 3D-printer on the nanoscale, almost arbitrary shapes can be created.

"Gold is not only a noble metal of exceptional beauty, but also a highly desired material for functional nanostructures", says Professor Heinz Wanzenbock from TU Wien. Especially patterned gold nanostructures are key enabling structures in plasmonic devices, for biosensors with immobilized antibodies and as electrical contacts.

For decades the fabrication of pure gold nanostructures on non-planar surfaces as well as of 3-dimensional gold nanostructures has been the bottleneck. Up to now, only 2-dimensional gold nanostructures on planar surfaces were achievable by resist based lithography.

The new technology, developed at TU Wien, can now solve this problem. The principle is the local decomposition of a metalorganic precursor by the focused electron beam of an electron microscope. With extremely high precision, the electron beam can decompose the organic compound at exactly the right position, leaving behind a 3D-trail of solid gold.

The final obstacle was getting the material purity right, as the electron-induced decomposition of metalorganic precursors has typically yielded metals with high carbon contaminations. This last bottleneck on the road to custom-designed, pure gold nanostructures has now been overcome as described in the work on "Highly conductive and pure gold nanostructures grown by electron beam induced deposition" published in Scientific Reports.

While conventional gold deposition usually contains about 70 atomic % carbon and only 30 atomic % gold, the new approach developed by a research group lead by Dr. Heinz Wanzenboeck at TU Wien has allowed to fabricate pure gold structures by in-situ addition of an oxidizing agent during the gold deposition.

"The whole community has been working hard for the last 10 years to directly deposit pure gold nanostructures", says Heinz Wanzenbock. At last, the group's expertise in engineering and chemical reactions paid off and direct deposition of pure gold was successful. "It's a bit like discovering the legendary philosopher's stone that turns common, ignoble material into gold" joked Wanzenboeck.

This deposited pure gold structure exhibits extremely low resistivity near that of bulk gold. Generally, a FEBID gold structure has a resistivity around 1-Ohm-cm which is about 1 million times worse than the resistivity of purest bulk gold.

However, this specially enhanced FEBID process produces a resistivity of 8.8 micro-Ohm-cm which is only a factor 4 away from the bulk resistivity of purest gold (2.4 micro-Ohm-cm).

The authors of the paper Dr. Mostafa Moonir Shawrav and Dipl.Ing. Philipp Taus stated, "This highly conductive and pure gold structure will open a new door for novel nanoelectronic devices. For example, it will be easier to produce pure gold structures for nanoantennas and biomolecule immobilization which will change our everyday life".

Dr. Shawrav added "it is remarkable how a regular SEM (Scanning Electron Microscope) nowadays can deposit nanostructures compared to 20 years back when it was only a characterization device".

And with pure gold direct deposition available now, he expects nanodevices to be deposited directly and utilized in many different applications for technological revolution. Concluding, this work is a giant leap forward for 3D nano-printing of gold structures which will be the core part of nanoplasmonics and bioelectronics devices.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Vienna University of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Nanoparticle taxicab materials can identify, collect and transport debris on surfaces
Amherst MA (SPX) Nov 07, 2016
Inspired by proteins that can recognize dangerous microbes and debris, then engulf such material to get rid of it, polymer scientists led by Todd Emrick at the University of Massachusetts Amherst have developed new polymer-stabilized droplet carriers that can identify and encapsulate nanoparticles for transport in a cell, a kind of "pick up and drop off" service that represents the first success ... read more


NANO TECH
Progress, but uphill slog for women in tech

NavCube could support an X-ray communication test in space

NASA, Navy practice Orion module recovery

Weightless tourism just 4 years away

NANO TECH
JCSAT-15 arrives in Kourou for Dec Ariane 5 launch

Aerojet Rocketdyne completes CST launch abort engine hot fire tests

China launches first heavy-lift rocket

NASA Uses Tunnel Approach to Study How Heat Affects SLS Rocket

NANO TECH
Mars' ionosphere shaped by crustal magnetic fields

Iron-Loving Bacteria A Model For Mars Life

Opportunity makes small U-turn to reach summit of Spirit Mound

'Millions' needed to continue Europe's Mars mission: ESA chief

NANO TECH
Long March-5 reflects China's "greatest advancement" yet in rockets

New heavy-lift carrier rocket boosts China's space dream

Long March-7 being assembled, to transport Tianzhou-1

Kuaizhou-1 scheduled to launch in December

NANO TECH
AsiaSat wins patent for effective satellite broadband connectivity to aircraft

Sun-observing MinXSS CubeSat to yield insights into solar flare energetics

Optus achieves full certification of 4 teleports

ISRO's World record bid: Launching 83 satellites on single rocket

NANO TECH
We gather here today to join lasers and anti-lasers

Trace metal recombination centers kill LED efficiency

Studying structure to understand function within 'material families'

Study: Math scares everyone, even physicists

NANO TECH
What happens to a pathogenic fungus grown in space?

How Planets Like Jupiter Form

Giant Rings Around Exoplanet Turn in the Wrong Direction

Preferentially Earth-sized Planets with Lots of Water

NANO TECH
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.