. 24/7 Space News .
ROCKET SCIENCE
Nanosatellite thruster emits pure ions
by Becky Ham for MIT.nano
Boston MA (SPX) Jan 22, 2021

Nanosatellite thrusters that emit a stream of pure ions are the first of their kind to be entirely additively manufactured, using a combination of 3D printing and hydrothermal growth of zinc oxide nanowires. A stainless steel version (top) works better overall but is much more expensive to produce. MIT researchers found that a polymer version (bottom) yields comparable performance at a lower cost.

A 3D-printed thruster that emits a stream of pure ions could be a low-cost, extremely efficient propulsion source for miniature satellites.

The nanosatellite thruster created by MIT researchers is the first of its kind to be entirely additively manufactured, using a combination of 3D printing and hydrothermal growth of zinc oxide nanowires. It is also the first thruster of this type to produce pure ions from the ionic liquids used to generate propulsion.

The pure ions make the thruster more efficient than similar state-of-the-art devices, giving it more thrust per unit flow of propellant, says Luis Fernando Velasquez-Garcia, principal research scientist at MIT's Microsystems Technology Laboratories (MTL).

The thrust provided by the device, which is about the size of a dime, is minuscule. The force can be measured on the scale of a few tens of micronewtons, a thrust about equal to half the weight of one of the sesame seeds in a hamburger bun. But in the frictionless environment of orbit, a CubeSat or similarly small satellite could use these tiny thrusts to accelerate or maneuver with fine control.

Velasquez-Garcia says additive manufacturing's advantages offer new low-cost possibilities for powering satellites. "If you want to be serious about developing high-performance hardware for space, you really need to look into optimizing the shapes, the materials, everything that composes these systems. 3D printing can help with all of these things," he says.

Velasquez-Garcia and MTL postdoc Dulce Viridiana Melo Maximo describe the thruster in the December 2020 issue of the journal Additive Manufacturing. The work was sponsored by the MIT-Tecnologico de Monterrey Program in Nanoscience and Nanotechnology and the MIT Portugal program.

Electrospraying pure ions
The miniaturized thruster operates electrohydrodynamically, producing a fine spray of accelerated, charged particles that are emitted to produce a propulsive force. The particles come from a sort of liquid salt called ionic liquid.

In the MIT design, a 3D-printed body holds a reservoir of ionic liquid along with a miniature forest of emitter cones coated with zinc oxide nanowires hydrothermally grown on the cone surfaces. The nanowires act as wicks to transport the liquid from the reservoir to the emitter tips. By applying a voltage between the emitters and a 3D-printed extractor electrode, charged particles are ejected from the emitter tips. The researchers experimented with printing the emitters in a type of stainless steel as well as a polymer resin.

The researchers were able to detect the pure ion jet using a technique called mass spectrometry, which can identify the composition of particles based on their molecular mass. Typically, an electrospray produced from ionic liquids would contain ions plus other species made of ions mixed with neutral molecules.

The pure ion jet was a surprise, and the research team still isn't entirely sure how it was produced, although Velasquez-Garcia and his colleagues think the zinc oxide nanowires "are the secret sauce," he says. "We believe it has something to do with the way the charge is injected and the way the fluid interacts with the wire material as it transports the fluid to the emission sites."

Producing a jet of pure ions means that the thruster can utilize more efficiently the propellant on board, and propellant efficiency is key for objects in orbit because refueling satellites is rarely an option, he explains. "The hardware that you put into space, you want to get many, many years of use out of that, so I think it's a good strategy to do it efficiently."

Advantages of additive manufacturing
Electrospray designs can have many applications beyond space, says Velasquez-Garcia. The technique "can emit not just ions, but also things like nanofibers and droplets. You could use the fibers to make filters, or electrodes for energy storage, or use the droplets to purify seawater by removing brine. You could also use electrospray designs in a combustor, to atomize fuel into very small and fine droplets."

The nanosatellite thruster is a good example how additive manufacturing can produce devices that are "personalized, customized and made from finely featured, complex multi-material structures," he adds. Instead of using expensive laser machining or clean-room technologies for specialized industrial manufacturing, he and his colleagues made the thruster mostly on commercial printers using instructions that can be distributed widely.

And since the techniques are relatively inexpensive, fast, and easy to use, Velasquez-Garcia says designs can be "exquisitely iterated" to improve features and explore surprising effects, such as the pure ion emission in the case of the new thruster.

The advantages of 3D printing microsystems include lower costs and shorter times for prototyping and development, along with the ease of assembling multimaterial structures, says Tomasz Grzebyk, a microsystems professor at Wroclaw University of Science and Technology, who was not involved with the study.

"All these advantages can be seen also in the ion thrusters developed at MIT," Grzebyk says. "And what more, since there has been a great progress in 3D printing in last few years, the parameters of devices fabricated using this method are becoming similar to these obtained by much more complex, expensive and restricted to specialized laboratories microengineering techniques."

"3D printing technology is also constantly improving, potentially making it possible to implement in the near future even better systems that have smaller features and are made of better materials," he says. "We are on track to producing the best possible hardware that a lot more people can afford."

Research Report: "Additively manufactured electrohydrodynamic ionic liquid pure-ion sources for nanosatellite propulsion"


Related Links
MIT News Office
Rocket Science News at Space-Travel.Com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROCKET SCIENCE
Exotrail aims for more in orbit space mobility
Brussels, Belgium (SPX) Jan 13, 2021
Exotrail reports full success of first-ever cubesat mission equipped with Hall-effect electric propulsion technology. Through an In-Orbit Demonstration mission launched to Low Earth Orbit on 7th of November 2020 onboard a PSLV rocket, Exotrail nominally ignited its ExoMGTM Hall-effect electric propulsion system on the first attempt. Small satellite constellations will now be able to quickly change their orbit once in space, giving new capabilities for satellite operators: more flexibility in their ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROCKET SCIENCE
Tourism on track in the world's largest cave

Glenn's Power Systems Facility has supported Station research for decades

Muscles, metals, bubbles and rotifers - a month of European science in space

Asteroids vs. microbes

ROCKET SCIENCE
SpaceX CRS-21 safely splashes down off the coast of Florida for first time

SpaceX launches first Starlink satellite mission of 2021

NASA's moon rocket roars to life during shortened test-firing

Florida's Space Coast the Number 1 Launch Site in the World in 2020

ROCKET SCIENCE
Mystery of Martian glaciers revealed

With $3M NASA Grant, UArizona scientists will test Mars exploration drones in Iceland

Analyzing different solid states of water on other planets and moons

InSight 'Mole' payload ends operations on Mars

ROCKET SCIENCE
China's space station core module, cargo craft pass factory review

Key modules for China's next space station ready for launch

Major space station components cleared for operations

Chinese space enterprise gears up for record-breaking 40-plus launches in 2021

ROCKET SCIENCE
China launches new mobile telecommunication satellite

OneWeb secures investment from Softbank and Hughes Network Systems

Astronauts to boost European connectivity

Statement on Satellite Constellations by German Astronomical Society

ROCKET SCIENCE
Keep this surface dirty

Astroscale's ELSA-d debris buster ready for a March launch

DARPA opens door to producing "unimaginable" designs for DoD

Kaman KD-5600 Family of Digital Differential Measuring Systems Ideal for Wide Range of Applications, Industries

ROCKET SCIENCE
A 'super-puff' planet like no other

Simulating evolution to understand a hidden switch

Astronomers finally measure polarized light from exoplanet

A rocky planet around one of our galaxy's oldest stars

ROCKET SCIENCE
The 15th Anniversary of New Horizons Leaving Earth

Juno mission expands into the future

Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.