Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Nano-mechanical study offers new assessment of silicon for next-gen batteries
by Staff Writers
Atlanta GA (SPX) Sep 25, 2015


Shown are details of a custom environmental indenter used to test thin film electrodes made of amorphous silicon. The device was used to develop a detailed nano-mechanical study of mechanical degradation processes in silicon thin films. Image courtesy Rob Felt, Georgia Tech. For a larger version of this image please go here.

A detailed nano-mechanical study of mechanical degradation processes in silicon structures containing varying levels of lithium ions offers good news for researchers attempting to develop reliable next-generation rechargeable batteries using silicon-based electrodes.

Anodes - the negative electrodes - based on silicon can theoretically store up to ten times more lithium ions than conventional graphite electrodes, making the material attractive for use in high-performance lithium-ion batteries. However, the brittleness of the material has discouraged efforts to use pure silicon in battery anodes, which must withstand dramatic volume changes during charge and discharge cycles.

Using a combination of experimental and simulation techniques, researchers from the Georgia Institute of Technology and three other research organizations have reported surprisingly high damage tolerance in electrochemically-lithiated silicon materials. The work suggests that all-silicon anodes may be commercially viable if battery charge levels are kept high enough to maintain the material in its ductile state.

Supported by the National Science Foundation, the research is reported in the journal Nature Communications.

"Silicon has a very high theoretical capacity, but because of the perceived mechanical issues, people have been frustrated about using it in next-generation batteries," said Shuman Xia, an assistant professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech.

"But our research shows that lithiated silicon is not as brittle as we may have thought. If we work carefully with the operational window and depth of discharge, our results suggest we can potentially design very durable silicon-based batteries."

Lithium ion batteries are used today in a wide range of applications from hand-held mobile devices up to laptop computers and electric vehicles. A new generation of high-capacity batteries could facilitate expanded transportation applications and large-scale storage of electricity produced by renewable sources.

The challenge is to get more lithium ions into the anodes and cathodes of the batteries. Today's lithium batteries use graphite anodes, but silicon has been identified as an alternative because it can store substantially more lithium ions per atom.

However, storing those ions produces a volume change of up to 280 percent, causing stress that can crack anodes made from pure silicon, leading to significant performance degradation. One strategy is to use a composite of silicon particles and graphite, but that does not realize the full potential of silicon for boosting battery capacity.

In an effort to understand what was happening with the materials, the research team used a series of systematic nano-mechanical tests, backed up by molecular dynamics simulations. To facilitate their study, they used silicon nanowires and electrochemical cells containing silicon films that were about 300 nanometers in thickness.

The researchers studied the stress produced by lithiation of the silicon thin films, and used a nanoindenter - a tiny tip used to apply pressure on the film surface - to study crack propagation in these thin films, which contained varying amounts of lithium ions. Lithium-lean silicon cracked under the indentation stress, but the researchers were surprised to find that above a certain concentration of lithium, they could no longer crack the thin film samples.

Using unique experimental equipment to assess the effects of mechanical bending on partially lithiated silcon nanotires, researchers led by Professor Scott Mao at the University of Pittsburgh studied the nanowire damage mechanisms in real-time using a transmission electron microscope (TEM). Their in-situ testing showed that the silicon cores of the nanowires remained brittle, while the outer portion of the wires became more ductile as they absorbed lithium.

"Our nanoindentation and TEM experiments were very consistent," said Xia. "Both suggest that lithiated silicon material becomes very tolerant of damage as the lithium concentration goes above a certain level - a lithium-to-silicon molar ratio of about 1.5. Beyond this level, we can't even induce cracking with very large indentation loads."

Ting Zhu, a professor in Woodruff School of Mechanical Engineering at Georgia Tech, conducted detailed molecular dynamics simulations to understand what was happening in the electrochemically-lithiated silicon. As more lithium entered the silicon structures, he found, the ductile lithium-lithium and lithium-silicon bonds overcame the brittleness of the silicon-silicon bonds, giving the resulting lithium-silicon alloy more desirable fracture strength.

"In our simulation of lithium-rich alloys, the lithium-lithium bonds dominate," Zhu said. "The formation of damage and propagation of cracking can be effectively suppressed due to the large fraction of lithium-lithium and lithium-silicon bonds. Our simulation revealed the underpinnings of the alloy's transition from a brittle state to a ductile state."

Using the results of the studies, the researchers charted the changing mechanical properties of the silicon structures as a function of their lithium content. By suggesting a range of operating conditions under which the silicon remains ductile, Xia hopes the work will cause battery engineers to take a new look at all-silicon electrodes.

"Our work has fundamental and immediate implications for the development of high-capacity lithium-based batteries, both from practical and fundamental points of view," he said. "Lithiated silicon can have a very high damage tolerance beyond a threshold value of lithium concentration. This tells us that silicon-based batteries could be made very durable if we carefully control the depth of discharge."

In future work, Xia and Zhu hope to study the mechanical properties of germanium, another potential anode material for high-rate rechargeable lithium-ion batteries. They will also look at all-solid batteries, which would operate without a liquid electrolyte to shuttle ions between the two electrodes. "We hope to find a solid electrolyte with both high lithium ion conductivity and good mechanical strength for replacing the current liquid electrolytes that are highly flammable," Zhu said.

"The research framework we have developed here is of general applicability to a very wide range of electrode materials," Xia noted. "We believe this work will stimulate a lot of new directions in battery research." Xueju Wang, et al., "High Damage Tolerance of Electrochemically Lithiated Silicon," (Nature Communications, 2015).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Georgia Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
PolyU develops novel eco high performance energy storage device
Hong Kong (SPX) Sep 25, 2015
The Department of Applied Physics of The Hong Kong Polytechnic University (PolyU) has developed a simple approach to synthesize novel environmentally friendly manganese dioxide ink by using glucose. The MnO2 ink could be used for the production of light, thin, flexible and high performance energy storage devices via ordinary printing or even home-used printers. The capacity of the Mn ... read more


ENERGY TECH
NASA's LRO discovers Earth's pull is 'massaging' our moon

Moon's crust as fractured as can be

China aims to land Chang'e-4 probe on far side of moon

China Plans Lunar Rover For Far Side of Moon

ENERGY TECH
Expect Martian Colonies to Build Themselves First

Opportunity Continues Search for Clay Minerals On Mars

Record-breaking astronauts return to Earth

Supervising two rovers from space

ENERGY TECH
Making a difference with open source science equipment

NASA, Harmonic Launch First Non-Commercial UHD Channel in NAmerica

Russian cosmonaut back after record 879 days in space

New Life for Old Buddy: Russia Tests Renewed Soyuz-MS Spacecraft

ENERGY TECH
Long March-2D carrier rocket blasts off in NW China

Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

ENERGY TECH
US astronaut misses fresh air halfway through year-long mission

Andreas Mogensen lands after a busy mission on Space Station

ISS Crew Enjoy Kharcho Soup, Mare's Milk in Orbit

Slam dunk for Andreas in space controlling rover on ground

ENERGY TECH
Europe's MBDA to market U.S.-made rocket conversion system

Russia successfully launches satellite with Proton rocket

Russia Launches Telecoms Satellite on Board Proton-M Rocket

Boeing rejects Aerojet bid for United Launch Alliance

ENERGY TECH
Stellar atmosphere can be used to predict the composition of rocky exoplanets

Watching an exoplanet in motion around a distant star

Study: 'Hot Jupiter' exoplanets formed extremely rapidly

Europlanet 2020 launches new era of planetary collaboration in Europe

ENERGY TECH
Laser pulses for ultrahigh molecular sensitivity, in Nature Photonics

4-D technology allows self-folding of complex objects

Laser ablation boosts terahertz emission

Insects passed 'the Turing Test'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.