. 24/7 Space News .
STELLAR CHEMISTRY
NRL brightens perspective of mysterious mini-halos
by Staff Writers
Washington DC (SPX) Aug 04, 2017


This image shows emission surrounding the Perseus Cluster (NGC 1275) from the 270-430 megahertz (MHz) radio map. In this image the main structures of the mini-halo are identified as: the northern extension; the two eastern spurs; the concave edge to the south; and the south-western edge and a plume of emission to the south-south-west. The small knob at the end of the western tail is the galaxy NGC 1272. The bar at top left shows a distance of 90 kpc or roughly 240,000 light years. Image courtesy NRAO/JVLA.

The largest gravitationally bound objects in the universe are galaxy clusters that form at the intersection of cosmic web filaments. These entities are shaped and grow through massive collisions as material streams into their gravitational pull. Within the heart of some galaxy clusters are mysterious and little known radio mini-halos. These rare, dispersed, and steep-spectrum (brighter at low frequencies) radio sources surround a bright central radio galaxy and are highly luminous at radio wavelengths.

Studying this phenomenon is Dr. Tracy Clarke, a radio astronomer at the U.S. Naval Research Laboratory (NRL) Radio Astrophysics and Sensing Section and co-author of research on the topic titled, "Deep 230-470 [megahertz] VLA Observations of the mini-halo in the Perseus Cluster." She works in conjunction with the National Radio Astronomy Observatory (NRAO), the research team uses the upgraded Karl G. Jansky Very Large Array (JVLA) to peer into the cluster of galaxies in the constellation Perseus, 250 million light-years from Earth.

"In 2011, an upgrade to the receivers on the JVLA sacrificed the observatory's capability for operation at frequencies between 30 MHz and 300 MHz" said Clarke. "However, in 2013 all 27 of the 25-meter antennas of the JVLA were outfitted with new receivers, providing the bandwidth necessary for these observations."

According to Clarke the Perseus cluster is one of the most massive objects in the known universe, containing thousands of galaxies immersed in a vast cloud of multimillion-degree gas and harbors a mini-halo. Mini-halo systems are thought to provide a window on the otherwise elusive turbulence driven by minor mergers between galaxy clusters and less massive systems.

Funded by NRL, the new broadband low frequency receivers have widened the VHF/UHF receiver bandwidth from 300-340 MHz to 230-470 MHz, significantly increasing the sensitivity of the telescope. The new JVLA facilities have also produced an order of magnitude of deeper image quality than previous high fidelity data, which lets the mini-halo emissions be seen clearly at the 270-430 MHz range.

"Overall, the recently upgraded JVLA has enabled a breakthrough in radio astronomy by providing a radio telescope with unprecedented sensitivity, resolution, and imaging capabilities," said Julie Hlavacek-Larrondo, Universite de Montreal astrophysicist and a lead author of the paper. "The new JVLA images of the Perseus cluster demonstrate the unique and state-of-the-art capabilities that this telescope offers to the community."

The deep JVLA observations of the Perseus cluster, combined with the cluster's properties, offer researchers a unique opportunity to study mini-halo structures. Lead author Marie-Lou Gendron-Marsolais, Ph.D. student at Universite de Montreal notes, "The results demonstrate the sensitivity of the new low frequency JVLA receivers, as well as the necessity to obtain deeper, higher-fidelity radio images of mini-halos in clusters to trace complex structures and further understand their origin."

Recognizing the power of the new VHF/UHF receiver, NRL wanted to enhance the availability of this new resource. In 2014, NRL and NRAO researchers worked to develop the VLA Low Band Ionospheric and Transient Experiment (VLITE) to tap into the new broadband low frequency receivers and piggyback on the $300 million dollar infrastructure of the JVLA.

"The data stream from this new system can be tapped to expand our understanding of objects such as these mini-halos while at the same time providing real-time monitoring of ionospheric weather conditions over the U.S. southwest," Clarke said.

At present, VLITE is being further expanded (eVLITE) to more than double the number of baselines from the original 45 baselines to 104 and should be fully operational by the end of August 2017. The expansion, to date, has brought a total of 66 baselines to VLITE.

Astronomers use VLITE for a wide range of astrophysics, which includes exploring the sky for short-lived bursts of radio waves. This type of research continues to grow in importance, since a small number of such events have led astronomers to suspect still-undiscovered phenomena in the universe may be producing many such powerful bursts.

STELLAR CHEMISTRY
New simulations could help in hunt for massive mergers of neutron stars, black holes
Berkeley CA (SPX) Aug 03, 2017
Now that scientists can detect the wiggly distortions in space-time created by the merger of massive black holes, they are setting their sights on the dynamics and aftermath of other cosmic duos that unify in catastrophic collisions. Working with an international team, scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed new computer ... read more

Related Links
Naval Research Laboratory
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
ESA astronaut Paolo Nespoli starts third mission on Space Station

Voyager spacecraft still in communication 40 years out into the void

NextSTEP Partners Develop Ground Prototypes to Expand our Knowledge of Deep Space Habitats

A look inside the Space Station's experimental BEAM module

STELLAR CHEMISTRY
Iran in 'successful' test of satellite-launch rocket

NASA taps BWXT for reactor design for future Mars missions

Dragon to be packed with new experiments for International Space Station

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

STELLAR CHEMISTRY
Eclipse Balloons to Study Effect of Mars-Like Environment on Life

Opportunity enters Automode during solar conjunction pause

Five Years Ago and 154 Million Miles Away: Touchdown!

For Moratorium on Sending Commands to Mars, Blame the Sun

STELLAR CHEMISTRY
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

STELLAR CHEMISTRY
Iridium Announces Third Iridium NEXT Launch Date

UK space companies to develop international partnerships

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

STELLAR CHEMISTRY
Engineering on a blue streak

Spacepath Communications and Datum Systems announce strategic partnership

JV with Russia to build up to 50 satellite solid-state power amplifiers

NASA enhances online scientific tool used by hundreds Worldwide

STELLAR CHEMISTRY
Unexpected life found at bottom of High Arctic lakes

NASA hiring a planetary protection officer to guard against alien invaders

Researchers detect exoplanet with glowing water atmosphere

Hubble detects exoplanet with glowing water atmosphere

STELLAR CHEMISTRY
Twilight observations reveal huge storm on Neptune

Jovian storm looms large in the Jupiter's High North

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.