. 24/7 Space News .
NANO TECH
NIST-made 'sun and rain' used to study nanoparticle release from polymers
by Staff Writers
Washington DC (SPX) Oct 05, 2016


NIST researchers simulate "sun and rain" to determine if weathering causes polymer coatings to release the nanoparticles they contain into the environment. On the left, Li-Piin Sung places a commercially available polymer with silicon dioxide nanoparticles into a chamber of the NIST SPHERE, a device for accelerated weathering that in one day subjects samples to the equivalent of 10-15 days of outdoor exposure. On the right, Deborah Jacobs applies "NIST simulated rain" to the weathered sample to collect any shed nanoparticles in the runoff. Image courtesy Fran Webber/NIST. For a larger version of this image please go here.

If the 1967 film "The Graduate" were remade today, Mr. McGuire's famous advice to young Benjamin Braddock would probably be updated to "Plastics ... with nanoparticles." These days, the mechanical, electrical and durability properties of polymers - the class of materials that includes plastics - are often enhanced by adding miniature particles (smaller than 100 nanometers or billionths of a meter) made of elements such as silicon or silver. But could those nanoparticles be released into the environment after the polymers are exposed to years of sun and water - and if so, what might be the health and ecological consequences?

In a recently published paper, researchers from the National Institute of Standards and Technology (NIST) describe how they subjected a commercial nanoparticle-infused coating to NIST-developed methods for accelerating the effects of weathering from ultraviolet (UV) radiation and simulated washings of rainwater. Their results indicate that humidity and exposure time are contributing factors for nanoparticle release, findings that may be useful in designing future studies to determine potential impacts.

In their recent experiment, the researchers exposed multiple samples of a commercially available polyurethane coating containing silicon dioxide nanoparticles to intense UV radiation for 100 days inside the NIST SPHERE (Simulated Photodegradation via High-Energy Radiant Exposure), a hollow, 2-meter (7-foot) diameter black aluminum chamber lined with highly UV reflective material that bears a casual resemblance to the Death Star in the film "Star Wars."

For this study, one day in the SPHERE was equivalent to 10 to 15 days outdoors. All samples were weathered at a constant temperature of 50 degrees Celsius (122 degrees Fahrenheit) with one group done in extremely dry conditions (approximately 0 percent humidity) and the other in humid conditions (75 percent humidity).

To determine if any nanoparticles were released from the polymer coating during UV exposure, the researchers used a technique they created and dubbed "NIST simulated rain." Filtered water was converted into tiny droplets, sprayed under pressure onto the individual samples, and then the runoff - with any loose nanoparticles - was collected in a bottle.

This procedure was conducted at the beginning of the UV exposure, at every two weeks during the weathering run and at the end. All of the runoff fluids were then analyzed by NIST chemists for the presence of silicon and in what amounts. Additionally, the weathered coatings were examined with atomic force microscopy (AFM) and scanning electron microscopy (SEM) to reveal surface changes resulting from UV exposure.

Both sets of coating samples - those weathered in very low humidity and the others in very humid conditions - degraded but released only small amounts of nanoparticles. The researchers found that more silicon was recovered from the samples weathered in humid conditions and that nanoparticle release increased as the UV exposure time increased. Microscopic examination showed that deformations in the coating surface became more numerous with longer exposure time, and that nanoparticles left behind after the coating degraded often bound together in clusters.

"These data, and the data from future experiments of this type, are valuable for developing computer models to predict the long-term release of nanoparticles from commercial coatings used outdoors, and in turn, help manufacturers, regulatory officials and others assess any health and environmental impacts from them," said NIST research chemist Deborah Jacobs, lead author on the study published in the Journal of Coatings Technology and Research.

This project resulted from a collaboration between NIST's Engineering Laboratory and Material Measurement Laboratory. It is part of NIST's work to help characterize the potential environmental, health and safety (EHS) risks of nanomaterials, and develop methods for identifying and measuring them.

D.S. Jacobs, S-R Huang, Y-L Cheng, S.A. Rabb, J.M. Gorham, P.J. Krommenhoek, L.L. Yu, T. Nguyen and L. Sung. Surface degradation and nanoparticle release of a commercial nanosilica/polyurethane coating under UV exposure. September 2016. Journal of Coatings Technology and Research.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institute of Standards and Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Scientists forge nanogold chains with atomic precision
Jyvaskyla, Finland (UPI) Sep 22, 2016
Bling isn't just for athletes and musicians. Recently, a team of engineers got in on the game, only on a much smaller scale. A group of scientists at the University of Jyvaskyla in Finland forged short chains of gold nanoparticles with unparalleled precision. The cores of these well-defined nanostructures are composed of just a few hundred metal atoms. Researchers say their new ... read more


NANO TECH
Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

NANO TECH
Curiosity Finds Evidence of Mars Crust Contributing to Atmosphere

Opportunity completes busy week of science and imaging

MAHRS on Mars: Looking at Weather and Habitat on the Surface

Elon Musk envisions 'fun' trips to Mars colony

NANO TECH
Software star Google expected to flex hardware muscle

Elon Musk an innovator wary of humanity's future

California dreamin' for Chinese investors in US

Yoyager's Golden Record not just for aliens anymore

NANO TECH
Waiting for Shenzhou 11

Tiangong-2 space lab enters preset orbit for docking with manned spacecraft

Batch production of Long March 5 underway

Chinese Space Lab Tiangong-2 Ready to Dock With Manned Spacecraft

NANO TECH
NASA, JAXA Focus on Maximizing Scientific Output From Space Station

Manned launch of Soyuz MS-02 maybe postponed to Nov 1

Russia cancels manned space launch over 'technical' issues

US astronauts complete spacewalk for ISS maintenance

NANO TECH
NASA develops satellite concept to exploit rideshare opportunities

Arianespace to launch satellites for Australia and India with Ariane 5

New twist in SpaceX rocket blast probe

Launch of Atlas V Rocket With WorldView-4 Satellite Postponed Till October

NANO TECH
Protoplanetary Disk Around a Young Star Exhibits Spiral Structure

New Low-Mass Objects Could Help Refine Planetary Evolution

Pluto's heart sheds light on a possible buried ocean

Hubble Finds Planet Orbiting Pair of Stars

NANO TECH
Use of 'large open-ended pipe piles' could lead to lower-cost bridge construction

Yes, the rumors are true! Brandeis really has a space chair

Indonesian scavengers scrape a living by recycling

Levitating nanoparticle improves torque sensing in quest for quantum theory fundamentals









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.