. 24/7 Space News .
CHIP TECH
NIST finds a sweet new way to print microchip patterns on curvy surfaces
by Staff Writers
Washington DC (SPX) Nov 25, 2022

Using sugar and corn syrup (i.e., candy), researcher Gary Zabow transferred the word "NIST" onto a human hair in gold letters, shown in false color in this black and white microscope image. Credit: G. Zabow/NIST

NIST scientist Gary Zabow had never intended to use candy in his lab. It was only as a last resort that he had even tried burying microscopic magnetic dots in hardened chunks of sugar - hard candy, basically - and sending these sweet packages to colleagues in a biomedical lab. The sugar dissolves easily in water, freeing the magnetic dots for their studies without leaving any harmful plastics or chemicals behind.

By chance, Zabow had left one of these sugar pieces, embedded with arrays of micromagnetic dots, in a beaker, and it did what sugar does with time and heat - it melted, coating the bottom of the beaker in a gooey mess.

"No problem," he thought. He would just dissolve away the sugar, as normal. Except this time when he rinsed out the beaker, the microdots were gone. But they weren't really missing; instead of releasing into the water, they had been transferred onto the bottom of the glass where they were casting a rainbow reflection.

"It was those rainbow colors that really surprised me," Zabow recalls. The colors indicated that the arrays of microdots had retained their unique pattern.

This sweet mess gave him an idea. Could regular table sugar be used to bring the power of microchips to new and unconventional surfaces? Zabow's findings on this potential transfer printing process were published in Science on Nov. 25.

Semiconductor chips, micropatterned surfaces, and electronics all rely on microprinting, the process of putting precise but minuscule patterns millionths to billionths of a meter wide onto surfaces to give them new properties. Traditionally, these tiny mazes of metals and other materials are printed on flat wafers of silicon. But as the possibilities for semiconductor chips and smart materials expand, these intricate, tiny patterns need to be printed on new, unconventional, non-flat surfaces.

Directly printing these patterns on such surfaces is tricky, so scientists transfer prints. There are flexible tapes and plastics that can do the job (like using putty to pick up newsprint), but these solids can still have trouble conforming to sharp curves and corners when the print is laid back down. They could also leave behind plastics or other chemicals that could be hard to remove or be unsafe for biomedical uses.

There are liquid techniques, where the transfer material is floated on the surface of water and the target surface is pushed through it. But that can be tricky too; with a freely flowing liquid it can be hard to place the print precisely where you want it on a new surface.

But, as Zabow discovered to his surprise, a simple combination of caramelized sugar and corn syrup can do the trick.

When dissolved in a small amount of water, this sugar mixture can be poured over micropatterns on a flat surface. Once the water evaporates, the candy hardens and can be lifted away with the pattern embedded. The candy with the print is then placed over the new surface and melted. The sugar/corn syrup combination maintains a high viscosity as it melts, letting the pattern maintain its arrangement as it flows over curves and edges. Then, using water, the sugar can be washed away, leaving just the pattern behind.

Using this technique, called REFLEX (REflow-driven FLExible Xfer), microcircuit patterns could be transferred like a stencil to allow scientists or manufacturers to etch and fill the materials they need in the right places. Or, patterned materials could be transferred from their original chip onto fibers or microbeads for potential biomedical or microrobotics studies, or over sharp or curved surfaces within new devices.

The technique proved successful for a large range of surfaces, including printing onto the sharp point of a pin, and writing the word "NIST" in microscale gold lettering onto a single strand of human hair. In another example, 1-micrometer-diameter magnetic disks were successfully transferred onto a floss fiber of a milkweed seed. In the presence of a magnet, the magnetically printed fiber reacted, showing the transfer had worked.

There's still more to explore with REFLEX, but this process could open new possibilities for new materials and microstructures across fields from electronics to optics to biomedical engineering.

"The semiconductor industry has spent billions of dollars perfecting the printing techniques to create chips we rely on," Zabow says. "Wouldn't it be nice if we could leverage some of those technologies, expanding the reach of those prints with something as simple and inexpensive as a piece of candy?"

Research Report:Reflow transfer for conformal three-dimensional microprinting.


Related Links
National Institute of Standards and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
US chip ban on China a dangerous game for all
Beijing (XNA) Nov 23, 2022
The United States has once again resorted to politicizing and weaponizing technology to suppress its imagined enemy. Washington has doubled down on its hi-tech rivalry with Beijing by imposing a sweeping set of export controls last month to cut China off from certain semiconductor chips and chip-making equipment. It marks the most significant move by the United States against China on technology exports in decades, heralding a real "Chip War," as Chris Miller, a history professor at Tufts University, sa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA temporarily loses communication with Orion spacecraft

Who will become history's first 'parastronaut'?

Gravitics raises $20M in bid to build next-generation space station modules

Preparing For Space Travel

CHIP TECH
Germany contributes four billion euros and remains key partner of European spaceflight

SpaceX Falcon 9 carries Eutelsat communications satellite in final launch

SpaceX Dragon supply ship launch scrubbed by bad weather

France, Germany, Italy agree on next-generation space rockets

CHIP TECH
A picture is worth a thousand words

Reading the ripples at observation mountain

An early start to a long weekend - Sols 3660-3664

Thanksgiving Plan Part Two - Sols 3665-3666

CHIP TECH
China launches 3 astronauts to Tiangong space station

China to provide training for foreign astronauts

China to launch Shenzhou XV on Tuesday

China recruits new reserve astronauts, open to those from Hong Kong, Macao

CHIP TECH
EchoStar and Maxar amend agreement for Hughes JUPITER 3 satellite production

European Space Agency names new astronauts, agrees record budget

British medic set to train to become first 'parastronaut'

Einstein Industries Ventures joins ESA Investor Network

CHIP TECH
AFRL teams with industry to expand alternative natural rubber supply

French-Lebanese architect seeks pro-climate construction transformation

Talks kick off on global plastic trash treaty

Industrializing 3D printing

CHIP TECH
An exoplanet atmosphere as never seen before

Many planets could have atmospheres rich in helium, study finds

NASA's Webb reveals an exoplanet atmosphere as never seen before

Glass-like shells of diatoms help turn light into energy in dim conditions

CHIP TECH
NASA's Europa Clipper gets its wheels for traveling in deep space

Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.