. 24/7 Space News .
TIME AND SPACE
NIST atomic clock comparison confirms key assumptions of 'Einstein's elevator'
by Staff Writers
Washington DC (SPX) Jun 05, 2018

Einstein's elevator: As the Earth falls like an elevator in the sun's gravity, atomic clocks based on hydrogen and cesium maintain the same synchronicity in their ticking properties. NIST physicists just measured this phenomenon better than ever before.

By comparing different types of remote atomic clocks, physicists at the National Institute of Standards and Technology (NIST) have performed the most accurate test ever of a key principle underlying Albert Einstein's famous theory of general relativity, which describes how gravity relates to space and time.

The NIST result, made possible by continual improvements in the world's most accurate atomic clocks, yields a record-low, exceedingly small value for a quantity that Einstein predicted to be zero.

As described in a Nature Physics paper posted online June 4, NIST researchers used the solar system as a laboratory for testing Einstein's thought experiment involving Earth as a freefalling elevator. Einstein theorized that all objects located in such an elevator would accelerate at the same rate, as if they were in a uniform gravitational field - or no gravity at all. Moreover, he predicted, these objects' properties relative to each other would remain constant during the elevator's free-fall.

In their experiment, the NIST team regarded Earth as an elevator falling through the Sun's gravitational field. They compared recorded data on the "ticks" of two types of atomic clocks located around the world to show they remained in sync over 14 years, even as the gravitational pull on the elevator varied during the Earth's slightly off-kilter orbit around the sun.

Researchers compared data from 1999 to 2014 for a total of 12 clocks - four hydrogen masers (microwave lasers) in the NIST time scale with eight of the most accurate cesium fountain atomic clocks operated by metrology laboratories in the United States, the United Kingdom, France, Germany and Italy.

The experiment was designed to test a prediction of general relativity, the principle of local position invariance (LPI), which holds that in a falling elevator, measures of nongravitational effects are independent of time and place. One such measurement compares the frequencies of electromagnetic radiation from atomic clocks at different locations.

The researchers constrained the violation of LPI to a value of 0.00000022 plus or minus 0.00000025 - the most miniscule number yet, consistent with general relativity's predicted result of zero, and corresponding to no violation. This means the ratio of hydrogen to cesium frequencies remained the same as the clocks moved together in the falling elevator.

This result has five times less uncertainty than NIST's best previous measurement of the LPI violation, translating to five times greater sensitivity. That earlier 2007 result, from a 7-year comparison of cesium and hydrogen atomic clocks, was 20 times more sensitive than the previous tests.

The latest measurement advance is due to improvements in several areas, namely more accurate cesium fountain atomic clocks, better time transfer processes (which enable devices at different locations to compare their time signals), and the latest data for computing the position and velocity of Earth in space, NIST's Bijunath Patla said.

"But the main reason we did this work was to highlight how atomic clocks are used to test fundamental physics; in particular, the foundations of general relativity," Patla said. "This is the claim made most often when clockmakers strive for better stability and accuracy. We tie together tests of general relativity with atomic clocks, note the limitations of the current generation of clocks, and present a future outlook for how next-generation clocks will become very relevant."

Further limits on LPI are unlikely to be obtained using hydrogen and cesium clocks, the researchers say, but experimental next-generation clocks based on optical frequencies, which are much higher than the frequencies of hydrogen and cesium clocks, could offer much more sensitive results. NIST already operates a variety of these clocks based on atoms such as ytterbium and strontium.

Because so many scientific theories and calculations are intertwined, NIST researchers used their new value for the LPI violation to calculate variations in several fundamental "constants" of nature, physical quantities thought to be universal and widely used in physics. Their results for the light quark mass were the best ever, while results for the fine structure constant agreed with previously reported values for any pair of atoms.

Paper: N. Ashby, T.E. Parker and B.R. Patla. 2018. A null test of general relativity based on a long-term comparison of atomic transition frequencies. Nature Physics. June 4. Advance Online Publication


Related Links
National Institute of Standards and Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Yale physicists find signs of a time crystal
New Haven CT (SPX) May 03, 2018
Yale physicists have uncovered hints of a time crystal - a form of matter that "ticks" when exposed to an electromagnetic pulse - in the last place they expected: a crystal you might find in a child's toy. The discovery means there are now new puzzles to solve, in terms of how time crystals form in the first place. Ordinary crystals such as salt or quartz are examples of three-dimensional, ordered spatial crystals. Their atoms are arranged in a repeating system, something scientists have kno ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Trio reach Earth from ISS with football slated for World Cup

NASA selects US companies to advance space resource collection

ESA astronaut Luca Parmitano to be Space Station commander on his next flight

Final Fruit-ier: Thailand sends smelly durian into space

TIME AND SPACE
Commercial satellite launch service market to grow strongly through 2024

Arianespace and ISIS to launch small satellites on the Vega SSMS POC flight

First Engine Assembled for DARPA and Boeing Reusable Experimental Spaceplane

Watch live: SpaceX to launch SES-12 communications satellite

TIME AND SPACE
Opportunity Mars rover ready to study rock targets up close

New image shows exposed bedrock in Hale Crater on Mars

Mars Curiosity's Labs Are Back in Action

Embry-Riddle Student is Helping NASA Prepare for Trips to Mars

TIME AND SPACE
Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

China develops wireless systems for rockets

TIME AND SPACE
Airbus-built SES-12 dual-mission satellite successfully launched

NASA Selects Small Business Technology Awards

Gogo and Iridium Partner to Deliver Best-in-Class Aircraft Connectivity

From ships to satellites: Scotland aims for the sky

TIME AND SPACE
Scientists discover key mechanism behind the formation of spider silk

Supercomputer Astronomy: The Next Generation

Space Traffic Management - Oversight, Licensing And Enforcement

Firing up a new alloy

TIME AND SPACE
Searching for Potential Life-Hosting Planets Beyond Earth

Planets Can Easily Exist in Triple Star Systems

Distant moons may harbor life

NASA Dives Deep into the Search for Life

TIME AND SPACE
'Surprising' methane dunes found on Pluto

Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'

Scientists reveal the secrets behind Pluto's dunes

Pluto may be giant comet made up of comets, study says









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.