. 24/7 Space News .
EARTH OBSERVATION
NCAR's mini-satellite to measure howling winds high in atmosphere
by Staff Writers
Boulder CO (SPX) Dec 15, 2021

Illustration of the Earth's thermosphere.

The National Center for Atmospheric Research (NCAR) has received $6.5 million in funding from NASA to launch a roughly shoebox-sized satellite into space carrying an instrument designed to measure the howling thermospheric winds, which can gust more than 300 miles per hour through the highest reaches of the Earth's atmosphere.

The blustery winds in the thermosphere - the upper layer of the atmosphere that thins into space and which hosts orbiting satellites and dazzling auroras - can impact radio and GPS communications. But despite their disruptive potential, thermospheric winds are sparsely observed.

NCAR's new, rectangular "CubeSat," which will check in at just over a foot on its longest side, will contribute a wealth of new observational data that can help scientists improve models of the upper atmosphere and, ultimately, better predict impacts to communication systems and satellites. The CubeSat, dubbed WindCube, will likely be ready for launch in about three years.

"This is a significant achievement for NCAR and its High Altitude Observatory (HAO)," said NCAR Director Everette Joseph. "While the observatory has supported many satellite missions in the past, this is the first project our organization is leading. I am excited that we will be able to provide the research community with critical data for fundamental research that will ultimately help society better prepare for these disruptions in Earth's upper atmosphere."

The data from WindCube will help improve models of the upper atmosphere, which can be a challenge to accurately represent the winds in the real world.

WindCube is one of 4 new CubeSat missions announced by NASA's Heliophysics Flight Opportunities in Research and Technology program in cooperation with NASA's Space Weather Science Application. NCAR is sponsored by the National Science Foundation.

High-quality observations for a fraction of the cost
Thermospheric winds are driven by the intense heating of the Sun at that altitude; the region can be more than 350 degrees Fahrenheit hotter in the daytime than at night. However, the winds are also impacted by large-scale oscillations in the lower layers of the atmosphere, such as planetary waves and atmospheric tides, as well as by the solar wind.

The impact of thermospheric winds on radio waves is related to how they affect the ionosphere, which is made up of regions in the upper atmosphere that contain electrically charged ions. These charged regions, which overlay the thermosphere, are constantly changing and evolving. Depending on its regional characteristics at any given time, the ionosphere can reflect, bend, absorb, and otherwise alter radio waves, sometimes aiding propagation and sometimes disrupting it.

The neutral winds in the thermosphere blow around these charged structures in the ionosphere, and can force the ionosphere generally higher or lower, changing its characteristics. The winds can also change how the ionosphere reacts to disruptions from geomagnetic storms from solar activity.

For decades, scientists have measured thermospheric winds using a Fabry-Perot interferometer, which can detect the faint Doppler shift of red light (630 nanometer wavelength) emitted from atomic oxygen in the thermosphere as it's blown along. A stretching or bunching of the lightwaves indicates the speed at which the wind carrying the oxygen is moving. But it's challenging to take such measurements from the ground, especially during the daylight hours.

"The signal we're looking for is very weak," said NCAR project scientist Qian Wu, WindCube's joint team leader. "During the day, the sunlight obscures the signals we want to observe making it almost impossible."

Fabry-Perot interferometers launched into space overcome these challenges, but until recently, such instruments required a large satellite platform in order to have enough stability. For example, an interferometer onboard NASA's Ionospheric Connection Explorer (ICON) spacecraft currently observes the thermospheric winds from its orbit around the equator.

WindCube, which is set to orbit Earth around its poles, will be the first time a wind-measuring interferometer will be carried on a small CubeSat. This advancement is made possible because the CubeSat platform has become more stable and because scientists are able to build smaller instruments. The Fabry-Perot interferometer that will fly on WindCube will be built by HAO.

"The ability to install our instrument on a CubeSat allows us to increase critical measurements of the thermospheric winds at a fraction of the cost of a full-fledged satellite mission," said HAO Director Holly Gilbert. "We're excited to be able to make high-quality, cost-effective observations in the thermosphere, and we're hopeful that our success could enable more, similar missions in the future."

+ NASA's Heliophysics Flight Opportunities in Research and Technology program


Related Links
University Corporation for Atmospheric Research
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
How TIMED Flies
Greenbelt MD (SPX) Dec 08, 2021
Launched in 2001, NASA's TIMED mission has now spent 20 years surveying the complicated dynamics of Earth's upper atmosphere. Short for Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics, TIMED observes the chemistry and dynamics where Earth's atmosphere meets space. On its 20th anniversary, the scientific community is reflecting on what they've learned from TIMED's two decades of operations. TIMED's contributions over the last 20 years have influenced missions across NASA, especially in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Russia ready to 'fight' for space tourism supremacy

NASA selects second private astronaut mission to Space Station

Space Habitat Market size to grow by USD 94.92 Bn

Blue Origin plans to launch largest crew yet Saturday

EARTH OBSERVATION
SpaceX launches Turksat-5b

Webb placed on top of Ariane 5

ESA contract to advance Vega-C competitiveness

NASA 'Fires Up' Artemis RS-25 Rocket Engines with New Components

EARTH OBSERVATION
NASA's Ingenuity Mars Helicopter Reaches a Total of 30 Minutes Aloft

NASA's Perseverance Mars Rover Makes Surprising Discoveries

Out of the Shadows of the Maria Gordon notch: Sols 3328-3329

Cliffs and notches keeps Curiosity team busy: Sols 3330-3332

EARTH OBSERVATION
New technologies make Chinese astronauts' in-orbit lives easier

China's Long March carrier rocket embarks on 400th mission

On they march as China records 401st flight of Long March rocket family

First crew of space station provide a full update on China's progress

EARTH OBSERVATION
Investing recovery and resilience funds in space projects

New space economy ready to lift off thanks to Finnish innovation

Kepler Communications announces testing of Aether Network with Spire Global

Kleos' Patrol Mission Satellites Ready and Shipped to Launch Site

EARTH OBSERVATION
Long-Range Discrimination Radar Reshapes Adversaries' Calculus for Attacks Against US Homeland

Understanding cobalt's human cost

New smart-roof coating enables year-round energy savings

Nike buys virtual sneaker firm as metaverse buzz grows

EARTH OBSERVATION
Founding members of world's first independent space science mission confirmed

Life arose on hydrogen energy

Stellar "ashfall" could help distant planets grow

"Newer, nimbler, faster:" Venus probe will search for signs of life in clouds of sulfuric acid

EARTH OBSERVATION
NASA's Juno Spacecraft 'Hears' Jupiter's Moon

Deep Mantle Krypton Reveals Earth's Outer Solar System Ancestry

Cracking the mystery of nitrogen ice dynamics on Pluto

Planet decision that booted out Pluto is rooted in folklore, astrology









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.