. 24/7 Space News .
STELLAR CHEMISTRY
NASA's Webb Telescope Keeping Cool with Ultra-thin DuPont Kapton Polyimide Films
by Staff Writers
Wilmington DE (SPX) Dec 29, 2021

File image of a critical Sunshield test for the Webb Telescope.

After 30 years in development, the National Aeronautics Space Administration's (NASA) James Webb Space Telescope (JWST) was launched on December 25, 2021, from the European Space Agency's launch site at Kourou in French Guiana. DuPont technology, in the form of ultra-thin Kapton polyimide films, is the crucial material protecting the JWST from the light and the heat of the sun, enabling it to function properly in space.

Space is one of the most hostile and extreme environments imaginable. Above the insulating atmosphere of the Earth, spacecraft are subjected to extreme temperature, both hot and cold, and a significantly increased threat of radiation damage.

"The excellent thermal and mechanical properties of Kapton polyimide film make it an ideal material for space applications," said Tim Scott, business development leader, Aerospace and Defense, DuPont Electronics and Industrial. "For more than 50 years, Kapton polyimide film has been an integral technological material supporting spacecraft missions beginning with the Apollo 11 mission in July 1969."

The $10 billion JWST is the largest space telescope ever built and features a deployable mirror measuring more than 21 feet in diameter, made up of 18 hexagonal mirror segments. The gold-plated beryllium mirror segments are more than 8 feet in diameter and will focus on four main areas: first light in the universe, assembly of galaxies in the early universe, birth of stars and protoplanetary systems, and planets (including the origins of life.)

At the heart of the JWST is the Integrated Science Instrument Module (ISIM) a suite of four instruments including a near-infrared camera, a mid-infrared instrument, a fine guidance sensor and two different near-infrared spectrographs.

The JWST is the successor to the 30-year old Hubble space telescope and improves on Hubble in two key ways. The first is its size: Hubble is about the size of a school bus, whereas Webb is about half the size of a 737 aircraft. Hubble's mirror is approximately eight feet in diameter, while JWST's deployable mirror is more than 21 feet in diameter, making it 100 times more powerful than the Hubble.

The JWST will operate near the Earth-Sun L2 (Lagrange point), approximately 1,500,000 km (930,000 mi) beyond Earth's orbit. By way of comparison, Hubble orbits 550 km (340 mi) above Earth's surface, and the Moon is roughly 400,000 km (250,000 mi) from Earth.

Crucial to the JWST's performance is a five-layer sunshield because it keeps sunlight and background heat from interfering with the ISIM instruments. The sunshield is a diamond-shaped system of five layers of Kapton polyimide film approximately 70 feet long and 47 feet wide. Each layer of the Kapton polyimide film is coated with aluminum, and the sun-facing side of the two hottest layers (Layer 1 and Layer 2) also has a treated silicon coating to reflect the sun's heat back into space.

Each layer of the sunshield made by Kapton polyimide film is incredibly thin. Layer 1 will face the sun and is only 50 microns (0.002 inches) thick, while the other four layers of Kapton polyimide film are 25 microns (0.001 inches). The thickness of the aluminum and silicon coatings are even smaller.

The silicon coating is approximately 0.05 microns (50 nanometers) thick, while the aluminum coating is approximately 0.1 microns (100 nanometers) thick. JWST's sunshield was designed to be folded origami-style, twelve times in order to fit inside the Ariane 5 rocket, so the Kapton polyimide film layers needed to be ultra-thin.

The Kapton-enabled sunshield is a critical part of the Webb telescope design because the infrared cameras and instruments aboard must be kept very cold, under -370 F. and out of the sun's heat and light to function properly.

Each successive layer of the sun shield is cooler than the one below. The sunshield separates the observatory into a warm, sun-facing side with a maximum temperature of the outermost layer is 110C, and a cold side with a minimum temperature of roughly -236C.

This isn't the first time that NASA has selected DuPont technology to protect spacecraft designed for exploration missions. For more than 50 years, DuPont has demonstrated that its technology performs reliably in extreme temperature flux, atomic oxygen, particle and electromagnetic radiation, space debris and other space weather conditions experienced by satellites. As space missions become more complex, DuPont continues to research and create new ruggedized variations of Kapton to better withstand the unique conditions found in space.


Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
James Webb telescope sets off on million-mile voyage
Kourou (AFP) Dec 26, 2021
The world's most powerful space telescope on Saturday blasted off into orbit, headed to an outpost 1.5 million kilometres (930,000 miles) from Earth, after several delays caused by technical hitches. The James Webb Space Telescope, some three decades and billions of dollars in the making, left Earth enclosed in its Ariane 5 rocket from Kourou Space Centre in French Guiana. "What an amazing day. It's truly Christmas," said Thomas Zurbuchen, head of scientific missions for NASA, which together wit ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Space Station research during 2021

Zero gravity conditions in space may advance stem cell research, scientists say

2021: A year of space tourism, flights on Mars, China's rise

Visual displays in space station culture

STELLAR CHEMISTRY
Scientists at PPPL and Princeton University demonstrate a novel rocket for deep-space exploration

Precise Ariane 5 launch likely to extend Webb's expected lifetime

NASA Builds Artemis III Core Stage Forward Skirt

Virgin Orbit expected to list on NASDAQ

STELLAR CHEMISTRY
Perseverance Samples in Review: 2021

Chinese Mars mission sends photos of the Red Planet

Experiments show algae can survive in Mars-like environment

An icy spring at the Martian South Pole

STELLAR CHEMISTRY
China's astronauts mark New Year with livestream from space

China heads launch list of space rockets

Shenzhou XIII taikonauts complete second extravehicular mission

New technologies make Chinese astronauts' in-orbit lives easier

STELLAR CHEMISTRY
US Govt orders Polyakov to sell entire Firefly Aerospace stake

Satellogic to build high-throughput manufacturing plant in Netherlands

NASA, private space industry may reach new heights in 2022

UK firm closer to offering global internet via satellites

STELLAR CHEMISTRY
Say hello to a record-setting isotope

RUAG technology helped launch Webb into space

Scientists invent lead-free composite shielding material for neutron and gamma-ray

With great space power comes great responsibility

STELLAR CHEMISTRY
Billions of starless planets haunt dark cloud cradles

Lost in space: Rocky planets formed from missing solar system material

ESO telescopes help uncover largest group of rogue planets yet

Astronomers Detect Signature of Magnetic Field on an Exoplanet

STELLAR CHEMISTRY
Testing radar to peer into Jupiter's moons

Looking Back, Looking Forward To New Horizons

NASA's Juno Spacecraft 'Hears' Jupiter's Moon

Deep Mantle Krypton Reveals Earth's Outer Solar System Ancestry









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.