. 24/7 Space News .
STELLAR CHEMISTRY
NASA's Webb Observatory Spacecraft Element Environmental Testing Update
by Eric Villard for GSFC News
Greenbelt MD (SPX) May 07, 2018

File image of the James Webb Space Telescope undergoing cryogenict testing in Nov 2017.

The spacecraft element of NASA's James Webb Space Telescope recently completed its first two major launch environmental tests at Northrop Grumman Aerospace Systems in Redondo Beach, California, and will soon undergo further tests to ensure it will handle the rigors of launch and the harsh environment of space.

The spacecraft element's first test simulated the mechanical shock caused by the separation of the spacecraft's payload adapter after launch. The second test subjected the spacecraft to the extreme sound and resultant vibration of the launch environment. These shock separation and acoustics tests are routine for all spacecraft.

Detailed inspections of the hardware after the acoustic test showed that fastening hardware that hold the sunshield membrane covers in place had come loose.

"NASA is reviewing options for repair and the next steps in spacecraft element launch environment testing," said Greg Robinson, Webb's program director. "The team is reviewing the test data and hardware configuration and is actively working towards corrective action in the near future. We expect to get back to the environmental test flow shortly and continue to move safely and methodically toward mission success."

Discoveries like this one are not uncommon in the development of a complex and unique spacecraft. "This is an example of why space systems are thoroughly and rigorously tested on the ground to uncover imperfections and fix them prior to launch," said Robinson.

Webb's spacecraft element is the observatory's combined sunshield and spacecraft bus. The spacecraft element and Webb's combined optical element and science instruments, called its science payload, will form the complete observatory. The two halves currently reside at Northrop Grumman, NASA's observatory contractor.

The shock of payload separation
When Webb is launched into space, it must be folded like origami to fit inside its Ariane 5 rocket's payload fairing, which is about 15.1 feet (4.6 meters) wide. The fairing, also called the rocket's nose cone, protects Webb from the forces and heat of the atmosphere as the rocket accelerates into space.

Inside the fairing, the payload adapter physically attaches Webb to the top of the Ariane 5. The adapter has two halves - one that is permanently attached to Webb and the other that is attached to the second stage of the rocket. When the rocket reaches a specific altitude in Earth's upper atmosphere, the payload fairing is jettisoned and falls back to Earth. Following this, the first stage of the Ariane 5 expends its fuel and also is jettisoned.

After the second stage of the rocket gives Webb a final nudge to send it on its way to its orbit at the second Sun-Earth Lagrange point (L2), the two halves of the payload adapter separate, releasing Webb from the rocket. The release sends a mechanical shock - a series of high-frequency vibrations - through the observatory.

"Mechanical shock is a quick jolt to the system, a lot like when you shut your car door and the car shudders a little," explained Keith Parrish, the Observatory Manager for Webb at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The electronics in Webb are designed to withstand this shock just as a laptop is designed to withstand the bangs and drops of everyday life.

To simulate this separation on Earth, engineers at Northrop Grumman first suspended the spacecraft element in the air with the payload adapter attached to it. They then remotely released the bottom half of the payload adapter, which is the half that will be attached to the rocket during launch. The bottom half fell approximately 8 inches (about 20 centimeters) onto a padded catch area on the floor of the cleanroom where the test was being performed.

The engineers monitored the forces caused by the release to ensure they were within expected values, and high-speed video cameras recorded the separation to make sure it was smooth. During the actual flight and separation, 12 springs will gently push Webb away from the Ariane 5.

The sound and vibration of launch
After completing shock testing, engineers enveloped the spacecraft in a plastic tent and moved it into Northrop Grumman's Large Acoustic Test Facility. The tent protected the spacecraft from contamination during the move and during the acoustic test.

During the test, engineers subjected the spacecraft element to sound frequencies ranging from 25 Hertz to 2,500 Hertz, which is what Webb will experience during launch. These frequencies range from low bass (similar to that of a kick drum) to low treble (about the same level as the E7 key on a piano). It was also tested at loudness levels up to 142.5 decibels, about 3 decibels higher than what is expected during launch. Webb's science payload went through a similar acoustic test at NASA's Goddard Space Flight Center in Greenbelt, Maryland, in 2017.

Engineers mounted several microphones inside and outside the tent to monitor the acoustic environment during testing. They also mounted about 500 accelerometers around the spacecraft element to monitor the vibrational responses it experienced. An accelerometer measures the forces or stress the hardware is experiencing during the test.

After this first series of tests, Webb's spacecraft element will undergo vibration testing to ensure it will survive the intense shake of launch.


Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Greenland telescope opens new era of arctic astronomy
Boston MA (SPX) May 02, 2018
To study the most extreme objects in the Universe, astronomers sometimes have to go to some extreme places themselves. Over the past several months, a team of scientists has braved cold temperatures to put the finishing touches on a new telescope in Greenland. Taking advantage of excellent atmospheric conditions, the Greenland Telescope is designed to detect radio waves from stars, galaxies and black holes. One of its primary goals is to join the Event Horizon Telescope (EHT), a global array of ra ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Russia Offers Space Tourist Flight to US, European Astronauts, UAE Citizen

Jim Bridenstine brings understanding of commercial technology to his new role as NASA Admin

Tourism nearly a tenth of global CO2 emissions

Why plants are so sensitive to gravity: The lowdown

STELLAR CHEMISTRY
TDM Bridge Builder: Daniel Herman, Solar Electric Propulsion System Lead

SpaceX's Dragon cargo ship returns to Earth

Reduce, Reuse, Rockets?

Return of SpaceX cargo ship delayed by rough seas

STELLAR CHEMISTRY
Mars growth stunted by early giant planetary instability

InSight probe to survey Mars for secrets inside the planet

NASA's newest Mars lander to study quakes on Red Planet

NASA blasts off Mars-bound spaceship, InSight, to study quakes

STELLAR CHEMISTRY
China to Use Soviet Engine to Power Its First Reusable Space Rocket

Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

STELLAR CHEMISTRY
In crowded field, Iraq election hopefuls vie to stand out

ESA selects three new mission concepts for study

Australian Space Agency Lost In Canberra

China's communication satellites occupy niche in world market

STELLAR CHEMISTRY
Lasers in Space: Earth Mission Tests New Technology

China rejects US military claims of laser attacks on pilots

AF plans to accelerate defendable space with Next-Gen OPIR

Can this invasive exotic pest make better materials for industry and medicine?

STELLAR CHEMISTRY
An Exoplanet Atmosphere Free of Clouds

Dutch astronomers photograph possible toddler planet by chance

The Cheops ccience instrument arrives in Madrid

Hubble detects helium in the atmosphere of an exoplanet for the first time

STELLAR CHEMISTRY
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.