24/7 Space News
NASA's Laser Navigation Tech Enables Commercial Lunar Exploration
Navigation Doppler Lidar is a guidance system that uses laser pulses to precisely measure velocity and distance. NASA will demonstrate NDL's capabilities in the lunar environment during the IM-1 mission.
NASA's Laser Navigation Tech Enables Commercial Lunar Exploration
by Simone Williams for LRC News
Hampton VA (SPX) Feb 06, 2024

Later this month, NASA's commercial lunar delivery services provider Intuitive Machines will launch its Nova-C lunar lander carrying several NASA science and technology payloads, including the Navigation Doppler Lidar (NDL). This innovative guidance system, developed by NASA's Langley Research Center in Hampton, Virginia, under the agency's Space Technology Mission Directorate (STMD), can potentially revolutionize landing spacecraft on extraterrestrial worlds.

The NDL technology is a NASA payload for this Intuitive Machines Commercial Lunar Payload Services (CLPS) delivery, meaning NASA will demonstrate NDL's capabilities in the lunar environment during the mission but the data is not considered mission-critical for the successful landing of Nova-C, as Intuitive Machines has its own navigation and landing systems.

The NDL story started almost 20 years ago when Dr. Farzin Amzajerdian, NDL project manager at NASA Langley, made a breakthrough and successfully found a precise way to land rovers on Mars. In the late 1990s and early 2000s, several attempts at landing rovers on the surface of Mars were met with several significant challenges.

Radar was inherently imprecise for this application. Radio waves cover a large area on the ground, meaning smaller craters and boulders that are commonly found on the Martian surface could 'hide' from detection and cause unexpected hazards for landers.

"The landers needed the radar sensor to tell them how far they were off the ground and how fast they were moving so they could time their parachute deployment," said Amzajerdian. "Too early or too late, the lander would miss its target or crash into the surface."

Radio waves also couldn't measure velocity and range independently of one another, which is important, according to Aram Gragossian, electro-optics lead for NDL at NASA Langley, who joined the team about six years ago.

"If you go over a steep slope, the range changes very quickly, but that doesn't mean your velocity has changed," he said. "So if you just feed that information back to your system, it may cause catastrophic reactions."

Amzajerdian knew about this problem, and he knew how to fix it.

"Why not use a lidar instead of a radar?" he asked.

LiDAR, which stands for light detection and ranging, is a technology that uses visible or infrared light the same way radar uses radio waves. Lidar sends laser pulses to a target, which reflects some of that light back onto a detector. As the instrument moves in relation to its target, the change in frequency of the returning signal - also known as the Doppler effect - allows the lidar to measure velocity directly and precisely. Distance is measured based on the travel time of the light to the target and back.

Lidar offered several advantages over radar, notably the fact that a laser transmits a pencil beam of light that can give a more precise and accurate measurement.

In 2004, Amzajerdian proposed NDL as a concept to the Mars Science Laboratory team. In 2005, he and his team received funding from Langley to put together a proof of concept. Then, in 2007, they received funding for building and testing a prototype of a helicopter. This is when Langley's Dr. Glenn Hines joined NDL - first as electronic lead and now as chief engineer.

Since then, Amzajerdian, Hines, and numerous other team members have worked tirelessly to ensure NDL's success.

Hines credits the various NASA personnel who have continued to advocate for NDL. "In almost everything in life, you've got to have a champion," Hines said, "somebody in your corner saying, 'Look, what you're doing is good. This has credibility.' "

The Intuitive Machines delivery is just the beginning of the NDL story; a next-generation system is already in the works. The team has developed a companion sensor to NDL, a multi-functional Flash Lidar camera. Flash Lidar is a 3D camera technology that surveys the surrounding terrain - even in complete darkness. When combined with NDL, Flash Lidar will allow you to go "anywhere, anytime."

Other future versions of NDL could have uses outside the tricky business of landing on extraterrestrial surfaces. In fact, they may have uses in a very terrestrial setting, like helping self-driving cars navigate local streets and highways.

Looking at the history and trajectory of NDL, one thing is certain: The initial journey to the Moon will be the culmination of decades of hard work, perseverance, determination, and a steadfast belief in the project across the team, but held most fervently by NDL's champions, Amzajerdian and Hines.

NDL was NASA's Invention of the Year in 2022. Four programs within STMD contributed to NDL's development: Flight Opportunities, Technology Transfer, Small Business Innovation Research and Small Business Technology Transfer, and Game Changing Development.

NASA is working with multiple CLPS vendors to establish a regular cadence of payload deliveries to the Moon to perform experiments, test technologies, and demonstrate capabilities to help NASA explore the lunar surface. Payloads delivered through CLPS will help NASA advance capabilities for science, technology, and exploration on the Moon.

Related Links
Navigation Doppler Lidar
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
New insights into Lunar evolution with revised geological time scale proposed
Sydney, Australia (SPX) Jan 29, 2024
In a significant development in lunar science, a team of renowned scientists, including Dr. Dijun Guo from the National Space Science Center, Chinese Academy of Sciences, Dr. Jianhzong Liu from the Institute of Geochemistry, Chinese Academy of Sciences, and Dr. James W Head from Brown University, have proposed an updated time scale for the Earth's Moon. This new scheme, a result of comprehensive research, aims to provide a more integrated understanding of the Moon's ... read more

Space Beach Law Lab: Shaping the Future of Space Law at Queen Mary Conference

Third NASA Enabled Private Flight to Space Station Completes Safely

Axiom 3 astronauts undock from ISS for trip back to Earth

Four astronauts splash down after Axiom private mission

SpaceX Expands Global Internet Coverage with 22 New Starlink Satellites

Dream Chaser Spaceplane Undergoes Extreme Testing at NASA's Armstrong Facility

New Satellite Launch Marks a Milestone in China's Commercial Space Sector

Following repeated delays, NASA launches new PACE Earth-observing satellite

Ripple Me This: Sols 4089-4090

Lake deposits in Idaho give scientists insight into ancient traces of life on Mars

Confirmation of ancient lake on Mars builds excitement for Perseverance rover's samples

NASA helicopter's mission ends after three years on Mars

Space Pioneer and LandSpace Lead China's Private Sector to New Heights in Space

BIT advances microbiological research on Chinese Space Station

Shenzhou 18 and 19 crews undertake intensive training for next missions

Tianzhou 6 burns up safely reentering Earth

Rocket Lab Boosts Capital with $355 Million in Convertible Senior Notes Amid Growth Plans

Signal Ocean to make $10M strategic investment in Spire Global

Terran Orbital announces agreement with Shareholder Group

Geespace achieves milestone in satellite constellation development for future mobility

MXene-coated Devices Can Guide Microwaves in Space and Lighten Payloads

New Data Prep Tool from Spatial to Streamline CAD Workflows

DLR develops mobile station for Satellite Laser Ranging

Spaceborne Computer-2 sets new benchmark for AI and ML on ISS

Migration solves exoplanet puzzle

Carbon Monoxide Dynamics Offer New Insights into Exoplanet Habitability

UC Irvine-led team unravels mysteries of planet formation and evolution in distant solar system

NASA's Hubble Finds Water Vapor in Small Exoplanet's Atmosphere

NASA invites public to dive into Juno's Spectacular Images of Io

Europa Clipper gears up with full instrument suite onboard

New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

Subscribe Free To Our Daily Newsletters


The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.