Subscribe free to our newsletters via your
. 24/7 Space News .




EXO LIFE
NASA researchers find "frozen" recipe for extraterrestrial vitamin
by Staff Writers
Moffett Field CA (SPX) Jul 28, 2015


This is an artist's concept of a protoplanetry disk surrounding a forming star that is ejecting jets of material. Such disks contain countless tiny dust grains, many of which become incorporated into asteroids, comets, and planets.

Vitamin B3 could have been made on icy dust grains in space, and later delivered to Earth by meteorites and comets, according to new laboratory experiments by a team of NASA-funded researchers. Vitamin B3, also known as niacin or nicotinic acid, is used to build NAD (nicotinamide adenine dinucleotide), which is essential to metabolism and probably ancient in origin. The result supports a theory that the origin of life may have been assisted by a supply of biologically important molecules produced in space and brought to Earth by comet and meteor impacts.

The new work builds on earlier research by the team in which they analyzed carbon-rich meteorites and discovered that vitamin B3 was present at concentrations ranging from about 30 to 600 parts-per-billion. In that work, the team performed preliminary laboratory experiments that showed vitamin B3 could be made from a simpler building-block organic molecule called pyridine in carbon dioxide ice under conditions that simulated the environment in space.

The new experiments made the simulation more realistic by adding water ice to the mixture and using amounts closer to what is expected for interstellar ices and comets. The team found that even with the addition of water, the vitamin could be made under a wide variety of scenarios where the water ice abundance varied by up to ten times.

"We found that the types of organic compounds in our laboratory-produced ices match very well to what is found in meteorites," said Karen Smith of NASA's Goddard Space Flight Center in Greenbelt, Maryland. "This result suggests that these important organic compounds in meteorites may have originated from simple molecular ices in space.

This type of chemistry may also be relevant for comets, which contain large amounts of water and carbon dioxide ices. These experiments show that vitamin B3 and other complex organic compounds could be made in space and it is plausible that meteorite and comet impacts could have added an extraterrestrial component to the supply of vitamin B3 on ancient Earth."

Smith, who is lead author of a paper on this research published online June 17, 2015 in Chemical Communications, performed the work with her team at NASA Goddard, including her postdoctoral research advisor, Perry Gerakines of NASA Goddard. "This work is part of a broad research program in the field of Astrobiology at NASA Goddard," Gerakines said.

"We are working to understand the origins of biologically important molecules and how they came to exist throughout the Solar System and on Earth. The experiments performed in our laboratory demonstrate an important possible connection between the complex organic molecules formed in cold interstellar space and those we find in meteorites."

Exploding stars (supernovae) and the winds from red giant stars near the end of their lives produce vast clouds of gas and dust. Solar systems are born when shock waves from stellar winds and other nearby supernovae compress and concentrate a cloud of ejected stellar material until dense clumps of that cloud begin to collapse under their own gravity, forming a new generation of stars and planets.

These clouds contain countless dust grains. Just as frost forms on car windows during cold, humid nights, carbon dioxide, water, and other gases form a layer of frost on the surface of these grains. Radiation in space powers chemical reactions in this frost layer to produce complex organic molecules, possibly including vitamin B3. The icy grains become incorporated into comets and asteroids, some of which impact young planets like ancient Earth, delivering the organic molecules contained within them.

The researchers tested this theory by simulating the space environment in the Cosmic Ice Laboratory at NASA Goddard. An aluminum plate cooled to around minus 423 degrees Fahrenheit (minus 253 Celsius) was used to represent the frigid surface of an interstellar dust grain.

The plate was chilled in a vacuum chamber to replicate space conditions, and gases containing water, carbon dioxide, and pyridine were released into the chamber, where they froze onto the plate. The plate was then bombarded with protons at about 1 million volts from a particle accelerator to simulate space radiation.

The team performed an initial analysis of the contents of the frozen layer by shining infrared light on it to identify absorption patterns - certain molecules absorb infrared light at specific colors, or frequencies. The plate was then heated to room temperature so the ice residue could be analyzed in greater detail at Goddard's Astrobiology Analytical Laboratory. The team found that this experiment produced a variety of complex organic molecules, including vitamin B3.

Observations from the European Space Agency's Rosetta mission, now in orbit around Comet 67P/Churyumov-Gerasimenko, might add more support to the theory that comets brought organic matter to Earth. "Rosetta could help validate these experiments if it finds some of the same complex organic molecules in the gases released by the comet or in the comet's nucleus," said Smith.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
NASA Astrobiology Institute
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO LIFE
Is science drawing closer to an alien world?
Paris (AFP) July 24, 2015
NASA's discovery of Earth-like exoplanet Kepler-452b, nicknamed "Earth 2.0", has social media buzzing about the chances of finding a faraway world, possibly with alien life or key resources such as water. Science or fiction? The experts respond. - Is 'Earth 2.0' like our planet? - Currently we don't know if this planet is terrestrial - rocky - or a small gas planet. If Kepler-452b ... read more


EXO LIFE
NASA Could Return Humans to the Moon by 2021

Smithsonian embraces crowdfunding to preserve lunar spacesuit

NASA Sets Sights on Robot-Built Moon Colony

Technique may reveal the age of moon rocks during spaceflight

EXO LIFE
New Website Gathering Public Input on NASA Mars Images

Opportunity heading into Marathon Valley

Curiosity Rover Inspects Unusual Bedrock

Antarctic Offers Insights Into Life on Mars

EXO LIFE
Planetary Resources' First Spacecraft Successfully Deployed

Space crew praises US-Russian 'handshake in space' 40 years on

NASA selects leading-edge concepts for continued study

US selects four astronauts for commercial flight

EXO LIFE
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

EXO LIFE
Russia Launches New Crew to International Space Station

Russia Extends Life of International Space Station Until 2024

Russian, Japanese, US crew reach ISS despite minor mishap

Rocket carrying Russian, Japanese, US crew docks with ISS

EXO LIFE
Arianespace inaugurates new fueling facility for Soyuz upper stage

Atlas V Launch Uses New Measurement Hardware

Failed strut caused SpaceX rocket blast: CEO Elon Musk

Ariane 5 orbits Star One C4 and MSG-4 on Arianespace's sixth flight in 2015

EXO LIFE
Discovery Of A Mars-Size World Uses Tug-Of-War Technique

Finding Another Earth

Kepler Mission Discovers Bigger, Older Cousin to Earth

NASA discovers closest Earth-twin yet

EXO LIFE
NASA approves AVX's Space-Level X7R BME MLCCs

Rock paper fungus

First realization of invisible absorbers and sensors

Satellite time transfer method based on two-way common-view comparison




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.