. 24/7 Space News .
NASA instrument to measure temperature, pressure, and wind on Venus
by Brooke Hess and Anil Oza for GSFC News
Greenbelt MD (SPX) Oct 21, 2022

Computer rendering of the VASI instrument on the side of the DAVINCI Descent Sphere (probe).

The VASI (Venus Atmospheric Structure Investigation) instrument aboard NASA's Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging, or DAVINCI, mission to Venus, together with the other instruments on this mission, aims to investigate Venus' mysterious atmosphere by painting a more detailed picture of it than ever before.

VASI will be installed on the DAVINCI mission's descent sphere to parachute through Venus' atmosphere. The descent sphere carries a sophisticated suite of five instruments, including VASI, collectively designed to study the characteristics of the atmosphere and measure how they change as it descends.

VASI measurements will provide new information about Venus' temperature, pressure and winds and will provide the primary altitude reference for the descent sphere's atmospheric composition instruments during the plunge into Venus' searing, crushing atmosphere.

"There are actually some big puzzles about the deep atmosphere of Venus," said Ralph Lorenz, a scientist at Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, who is the science lead for the VASI instrument. "We don't have all the pieces of that puzzle and DAVINCI will give us those pieces by measuring the composition at the same time as the pressure and temperature as we get near the surface."

Among the many mysteries of the thick Venusian atmosphere are its structure, how volcanoes may have interacted with the atmosphere, and what that interaction can tell us about Earth's future.

"The long-term habitability of our planet, as we understand it, rests on the coupling of the interior and atmosphere," said Lorenz. "The long-term abundance of carbon dioxide in our atmosphere, which we really rely on to have kept Earth's surface warm enough to be habitable over geologic time, relies on volcanoes." One key question is whether volcanoes are still active on Venus. Detailed, altitude-resolved measurements of the atmospheric temperatures, winds and composition will contribute to answering this question.

Yet clouds of sulfuric acid, surface atmospheric pressure about 90 times higher than Earth's, and surface temperatures around 900 F (about 460 C) make Venus incredibly challenging to explore, and it's a herculean task to create instruments that can make sensitive measurements while being exposed to Venus' harsh environment. Because of this, most of DAVINCI's sensors and other subsystems are enclosed in a descent sphere built like a submarine, with sturdy construction to withstand the intense atmospheric pressures and effective insulation to shield these systems from the intense heat near Venus' surface. However, VASI's sensors must be directly exposed to these harsh conditions to do their job.

"Venus is hard. The conditions, especially low in the atmosphere, make it very challenging to engineer the instrumentation and the systems to support the instrumentation," Lorenz said. "All that has to be either protected from the environment or somehow built to tolerate it."

As the sphere descends toward the surface of Venus, VASI will record the atmosphere's temperature variations with a temperature sensor wrapped in a thin metal tube, like a straw. The atmosphere heats up the tube, which the sensor measures and records while being protected from the corrosive environment.

Simultaneously, VASI will measure atmospheric pressure using a small silicon membrane encased in the instrument. On one side of the membrane is a vacuum, and on the other is Venus' atmosphere, which will push on the membrane and stretch it. This stretch will be measured and used to calculate the strength of the pressure.

VASI will also measure wind speed and direction using a combination of accelerometers and gyroscopes installed in the descent sphere, plus Doppler tracking. Accelerometers measure changes in speed and direction while gyroscopes measure changes in orientation. Doppler tracking also measures changes in speed and direction by measuring the frequency shift of a radio signal from a transmitter in the descent sphere, similar to how an ambulance siren changes pitch as it speeds by.

The various sensors and housings for VASI are being assembled by NASA's Goddard Space Flight Center in Greenbelt, Maryland, with science direction from APL's Lorenz. The Doppler measurements are implemented in DAVINCI's radio system, which is built at APL.

NASA Goddard is the principal investigator institution for DAVINCI and will perform project management for the mission, provide science instruments as well as project systems engineering to develop the descent sphere. Goddard also leads the project science support team with an external science team from across the U.S. and including international participation.

Related Links
Venus Express News and Venusian Science

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

JPL's Venus Aerial Robotic Balloon Prototype Aces Test Flights
Pasadena CA (JPL) Oct 11, 2022
A scaled-down version of the aerobot that could one day take to the Venusian skies successfully completed two Nevada test flights, marking a milestone for the project. The intense pressure, heat, and corrosive gases of Venus' surface are enough to disable even the most robust spacecraft in a matter of hours. But a few dozen miles overhead, the thick atmosphere is far more hospitable to robotic exploration. One concept envisions pairing a balloon with a Venus orbiter, the two working in tande ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NASA to resume spacewalks after investigation into 'close call'

NASA Crew-4 astronauts safely splash down in Atlantic

Eagle-designed space drones target in-orbit construction

Crew-4 astronauts splash down after 170 days in space

AFRL upgrades rocket fabrication capabilities

NASA readies Superstack for upcoming JPSS-2 launch

NGC delivers first GEM 63XL solid rocket boosters to support Vulcan first flight

Ariane-6 stands tall on its launch pad

Ancient bacteria might lurk beneath Mars' surface

A hydrogen-rich first atmosphere for Mars inferred from clays on its surface

Celebrating Halloween and investigating ghoulish rocks from the Red Planet

New Site, New Sights, New Science: Sols 3628-3629

Mengtian space lab to undergo final tests before launch

China to invest in major space programs

China's deep space exploration laboratory recruits young talents

Mengtian space lab fueled ahead of upcoming launch

SpaceX deploys 3,500th Starlink satellite

NanoAvionics announces growth plans to become the prime supplier for small satellite constellations

SpaceX announces Starlink Internet service on airplanes

Spacecraft manufacturer Apex emerges from stealth with $7.5M in funding

D-Orbit announces launch contract with Elecnor Deimos for ALISIO-1

International Space Station maneuvers to avoid debris

US Space Command to Transfer Space Object Tracking to Department of Commerce

Climate change to increase lifetime of space pollution

Discovery could dramatically narrow search for space creatures

Innovative system evaluates habitability of distant planets

Discovery could dramatically narrow search for space creatures

Secret behind spectacular blooms in world's driest desert is invisible to human eyes

Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.