. 24/7 Space News .
ICE WORLD
NASA finds what a glacier's slope reveals about Greenland ice sheet thinning
by Lara Streiff for GSFC News
Greenbelt MD (SPX) Dec 21, 2020

illustration only

As glaciers flow outward from the Greenland Ice Sheet, what lies beneath them offers clues to their role in future ice thinning and sea-level rise contribution.

Outlet glaciers are rivers of ice flowing within the cracks of the bedrock and draining into the surrounding sea. They retreat and start to thin as climate warms, and this thinning works its way toward the center of the ice sheet. Now, by looking at the bed topography beneath the ice, scientists have a better understanding of which glaciers could have a significant impact on the Greenland Ice Sheet's contribution to sea-level rise in coming years. They found that some glaciers flowing over gentler slopes could have a greater impact than previously thought. The gentle slopes allow thinning to spread from the edge of the ice sheet far into the interior, whereas glaciers with steep drops in their bed topographies limit how far into the interior thinning can spread.

The research, which was published December 11th in Geophysical Research Letters, analyzed 141 outlet glaciers on the Greenland Ice Sheet to predict how far into the interior thinning may spread along their flow lines, starting from the ocean edge.

"What we discovered is some glaciers flow over these steep drops in the bed, and some don't," said lead author Denis Felikson with NASA's Goddard Space Flight Center in Greenbelt, Maryland, and the Universities Space Research Association (USRA). "For the glaciers that do have that steep drop in the bed, thinning can't make its way past those drops." Borrowing a term from geomorphology - the study of Earth's physical features - they coined these steep drop features "knickpoints."

When a river flows over a knickpoint, it often results in a waterfall or a lake. But for glaciers, steep is a relative term which in reality translates to just about three degrees of incline. "It's not like the ice is going over a cliff," said Felikson. "But in terms of glacier dynamics, they are very steep - an order of magnitude more steep than a typical bed that the ice flows over."

The researchers were able to identify these "steep" changes in topography using digital elevation models of the ice sheet bed and surface topography. Surface topography came from the Greenland Ice Mapping Project, created using NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument that flies aboard NASA's Terra satellite, in conjunction with data from NASA's Ice, Cloud, and land Elevation Satellite (ICESat) mission. The bed topography digital elevation model, known as the BedMachine data set, is a high-resolution model of the bed beneath the Greenland Ice Sheet, created using data from NASA's Operation IceBridge airborne surveys of polar ice.

"This bed topography data set was critical to us doing our work," Felikson said. "And it is thanks to NASA remote sensing, namely the Operation IceBridge surveys, that we were able to do this." Using the remote sensing data, scientists were able to compare topography measures to produce a single metric along a glacier's flow line. This helped them identify a break point between the upstream and downstream parts of the glacial ice.

Ice below the knickpoint is susceptible to thinning from the glacier's edge. But the thinning does not extend beyond this point upstream, so the interior of the ice sheet is not impacted.

Of all the glaciers observed, a majority (65 percent) had discernable knickpoints. Especially steep knickpoints are prevalent in the more mountainous regions of Greenland, where several of the biggest and fastest moving glaciers also show knickpoints that are relatively close to the coast. By sheer size alone these glaciers could contribute significantly to ice sheet thinning and melt, but because their knickpoints are near the coast, thinning is not expected to spread far inland.

However, glaciers that flow through gentle topography are found to either have gradual knickpoints, or no knickpoint at all. Such glaciers are of interest, and concern, because even those that are smaller in size have the potential to let thinning expand hundreds of kilometers inland, eroding the heart of the ice sheet.

"They could be impactful in terms of sea level rise, not because they are big and deep, but because they have access to more ice that they can eat away," said Felikson. "It will take them a lot longer to respond, but over the long term they could end up contributing just as much to sea level rise, maybe, as the big glaciers."

Over the gentle topography of the northwest coast of Greenland, nine of twelve neighboring glaciers are predicted to thin more than 250 km (155.3 miles) into the interior of the ice sheet, over a ~140-km (86.9 mile) wide region. The northwest sector of the ice sheet is also the only region experiencing an ongoing increase in ice discharge over the last couple decades, and Felikson predicts that it will continue to do so given the characteristics of these glaciers.

This work was started at the University of Texas as part of Felikson's dissertation and has continued throughout his time at NASA Goddard. The origins of knickpoints and their implications for long-term thinning, as well as Greenland's overall contribution to sea level rise, remain the basis for future research.

Research Report: The data used in this study is available here


Related Links
Greenland Ice Mapping Project
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Giant A-68A iceberg loses chunk of ice
Paris (ESA) Dec 21, 2020
A large block of ice has broken off the northern tip of the A-68A iceberg as seen in new images captured by the Copernicus Sentinel-3 mission. Satellite missions have been used to track the A-68A berg on its journey since 2017, when it broke off the Larsen C ice shelf in Antarctica. Over the past weeks, the A-68A iceberg has drifted alarmingly close to the remote island of South Georgia, where scientists feared that the iceberg could ground in the shallow waters offshore and threaten wildlife. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
China to launch core module of space station in first half of 2021

Marsquakes, water on other planets, asteroid hunting highlight 2020 in space

US may buy seat on Russia's Soyuz for astronaut's flight to ISS in Spring 2021,

NASA awards contract for Cold Stowage II

ICE WORLD
Loss of Vega flight VV17 report issued

Long March 8 rocket makes maiden flight

NASA awards contract for Global Hawk Skyrange program

FAA begins scoping period for environmental review at SpaceX launch site

ICE WORLD
A Martian Roundtrip: NASA's Perseverance Rover Sample Tubes

NASA video shows Perseverance rover's planned 'terror' landing on Mars

Fluvial Mapping of Mars

How to get people from Earth to Mars and safely back again

ICE WORLD
China plans to launch four manned spacecraft in next two years

China's Chang'e-5 orbiter embarks on new mission to gravitationally stable spot at L1

Mission accomplished, now on to the next: China Daily editorial

China prepares to launch Long March-8 Y1 rocket

ICE WORLD
Voyager Space Holdings to buy all of Nanoracks

Hughes selected by OneWeb for Ground system development and production under new $250 million contract

Lockheed Martin To Acquire Aerojet Rocketdyne

Russia lifts UK telecom satellites into orbit

ICE WORLD
New radiation vest technology protects astronauts, doctors

Space bauble

NTU Singapore scientists invent glue activated by magnetic field

Astroscale Ships ELSA-d Spacecraft to Launch Site

ICE WORLD
Astronomers detect possible radio emission from exoplanet

Key building block for organic molecules discovered in meteorites

Device mimics life's first steps in outer space

Scientists discover compounds that could have helped to start life on Earth

ICE WORLD
Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery

Swedish space instrument participates in the search for life around Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.