. 24/7 Space News .
EXO WORLDS
NASA Team Passes Major Technological Milestone for Characterizing Exoplanets
by Lori Keesey for GSFC News
Greenbelt MD (SPX) Sep 11, 2017


Instrument Scientist Michael McElwain and his team developed an integral field spectrograph called PISCES. The tabletop-sized instrument now is installed at a Jet Propulsion Laboratory facility to test light-suppression technologies for a planned follow-on to the James Webb Space Telescope. Goddard team members include Qian Gong, Tyler Groff, Jorge Llop, Avi Mandell, Maxime Rizzo, Prabal Saxena, and Neil Zimmerman. JPL team members include Eric Cady and Camilo Mejia Prada.

NASA researchers say they have passed a major milestone in their quest to mature more powerful tools for directly detecting and analyzing the atmospheres of giant planets outside the solar system - one of the observational goals of NASA's proposed Wide-Field Infrared Space Telescope, also known as WFIRST.

In tests conducted at the High-Contrast Imaging Testbed at NASA's Jet Propulsion Laboratory, or JPL, in Pasadena, California - one of the world's most advanced testbeds of its kind - researchers created what they call a region of very deep contrast between a simulated star and its planet. They also demonstrated the ability to detect and analyze the planet's faint light over a relatively large portion of the visible to near-infrared wavelength band.

An instrument developed by scientists at NASA's Goddard Space Flight Center in Greenbelt, Maryland - the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies, or PISCES - played an important role in the demonstration, showing that it could separate light of one or more Jupiter-sized exoplanets by their wavelength (color) and record the data at every position around a star.

To appreciate the researchers' milestone, it's important to understand the challenge itself.

The light from these planets is exceedingly faint - fainter than their host stars by a factor of 100 million or more, and from our perspective on Earth, these planets appear quite close to their stars. With a conventional imaging camera, the planet's light is lost in the glare of the star. However, with a coronagraph - a device that suppresses the glare and creates a dark zone around a star - the faint light of an exoplanet can be revealed.

Working in concert with the coronagraph, an integral field spectrograph, or IFS, such as PISCES, would be able to separate the exoplanet's light by its wavelength and record the data, revealing details about the planet's physical properties, including the chemical composition and structure of its atmosphere.

During the test, the Goddard-JPL team maintained a very deep contrast over 18 percent of the coronagraph's wavelength band - a record that bodes well for future missions like WFIRST, which has baselined a coronagraph and an IFS-type instrument on the mission. (To put this in perspective, the human eye can see the full visible spectrum of colors, from blue to red, which corresponds to a 50 percent bandpass. In comparison, a laser pointer has one single color, which is much smaller than one percent.)

"Achieving a contrast this deep over such a broad band has never been done before and was one of our goals. Ideally, we would like to observe the entire spectrum of the planet - in other words, see all its colors at once - but that's not yet possible with current coronagraphic technologies. Eighteen percent, as demonstrated by PISCES, is the current state of the art," said Goddard scientist and PISCES Instrument Scientist Michael McElwain.

In comparison, JPL's laboratory coronagraph maintained the same level of dark contrast over 10 percent of the optical-wavelength bands before the commissioning of the table-top PISCES last year.

"We are not done yet and are still trying to get to higher contrasts, but the 100 million-to-one over 18 percent of the optical wavelength band is an important and significant milestone," said Maxime Rizzo, a postdoctoral student who is working with McElwain and his team to advance PISCES. "With the increased bandpass, we can get many colors at once. This enables us to identify more molecules in the atmospheres and get a big picture."

PISCES, which McElwain developed with funding from Goddard's Internal Research and Development program and the prestigious Nancy Grace Roman Technology Fellowship, separates light a little differently than more traditional spectrographs.

As an IFS-type device, PISCES takes a coronagraphic image and samples it with a micro-lens array made up of more than 5,800 tiny glass segments no larger than the width of three human hairs. The micro-lens creates an array of "spots" that is then dispersed by a prism and finally re-imaged onto a detector. In practice, each micro-lens, or lenslet, isolates a small portion of the coronagraphic image, creating micro-spectra for the light that passes through each tiny lenslet. The multiple spectra then are combined into a data cube that scientists analyze.

The IFS provides all the wavelength information simultaneously across the entire field of view. With more traditional imaging observations, scientists must cycle through the different wavelengths, which takes time and requires a mechanism to change the filters - requirements not desirable with an orbiting observatory that only has limited time to spend on a target. The optical system itself changes over time due to thermal and dynamic variations, further underscoring the need for simultaneous spectral observations.

"That's why WFIRST planners baselined the IFS-type spectrograph in the first place," Rizzo said. "In this case, PISCES offered information over a full 18 percent of the bandpass, instead of the traditional 10 percent that had been demonstrated at JPL without an IFS. PISCES showed that it could enable more science."

Even though the team demonstrated the deep contrast over a greater portion of the visible to near-infrared bandpass, and in doing so, raised the technology's readiness level, work remains, said Avi Mandell, the WFIRST IFS project scientist. "The success has opened up all new starlight-suppression ideas that we want to test."

For more technology news, visit here

EXO WORLDS
Hubble delivers first hints of possible water content of TRAPPIST-1 planets
Munich, Germany (SPX) Sep 01, 2017
An international team of astronomers used the NASA/ESA Hubble Space Telescope to estimate whether there might be water on the seven earth-sized planets orbiting the nearby dwarf star TRAPPIST-1. The results suggest that the outer planets of the system might still harbour substantial amounts of water. This includes the three planets within the habitable zone of the star, lending further weight to ... read more

Related Links
Wide-Field Infrared Space Telescope
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Diet tracker in space

Three astronauts blast off for five-month ISS mission

Crewed Missions Beyond LEO

Voyager Spacecraft: 40 Years of Solar System Discoveries

EXO WORLDS
SLS Core Stage Simulator Will Pave Way for Mission Success

Arianespace announces a new contract, bringing its order book to 53 launches across three rockets

EUMETSAT signs with Arianespace for first Metop-SG satellite launch

MHI to launch first Inmarsat-6 satellite

EXO WORLDS
45 Kilometers on the Odometry for Opportunity

New tools for exploring the surface of Mars

NASA's Curiosity Mars Rover Climbing Toward Ridge Top

New Gravity Map Suggests Mars Has a Porous Crust

EXO WORLDS
Spacecraft passes docking test

China, Russia to Have Smooth Space Cooperation, Says Expert

Kuaizhou-11 to send six satellites into space

Russia, China May Sign 5-Year Agreement on Joint Space Exploration

EXO WORLDS
India, Japan Set to Boost Space Cooperation

Bids for government funding prove strong interest in LaunchUK

Blue Sky Network Reaffirms Commitment to Brazilian Market

India to Launch Exclusive Satellite for Afghanistan

EXO WORLDS
Dormant, Yet Always-Alert Sensor Awakes Only in the Presence of a Signal of Interest

Air Force activates new satellites for tracking space objects

'Peel-and-go' printable structures fold themselves

Ultrathin spacecraft will collect, deposit orbital debris

EXO WORLDS
Hubble observes pitch black planet

The return of the comet-like exoplanet

Does the Organic Material of Comets Predate our Solar System?

X-rays Reveal Temperament of Possible Planet-hosting Stars

EXO WORLDS
Hibernation Over, New Horizons Continues Kuiper Belt Cruise

Pluto features given first official names

Jupiter's Auroras Present a Powerful Mystery

New Horizons Files Flight Plan for 2019 Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.