. | . |
More reliable rainfall forecasts for South Asian summer monsoons in coming decades by Staff Writers Beijing, China (SPX) Mar 16, 2020
The South Asian summer monsoon (SASM) provides the principal water supply for over a billion people. In good monsoon years, farmers reap a rich harvest, while in bad monsoon years, severe droughts wipe out crops. And heavy rains during monsoon season cause floods and hit economy badly. Policy-makers and stakeholders urgently need projection of SASM for the coming 15-30 years - usually termed as "near future" in climate research community. Unfortunately, there are large uncertainties in current projection due to climate internal variability. "Internal variability refers to variations in the mean state due to natural internal processes within the climate system. It is usually regarded as 'noise' in climate projection." Said Xin Huang, the lead author of a new study published in Science Advances on March 13, 2020. Huang is a doctoral student with the Institute of Atmospheric Physics, Chinese Academy of Sciences, and the University of Chinese Academy of Sciences. Huang, along with her mentor Prof. Tianjun Zhou and collaborators from USA and Germany, identify the Interdecadal Pacific Oscillation (IPO) - a large-scale long period oscillation influencing climate variability over the Pacific Basin - as one of the key internal variability modes that reduce the uncertainties and improve projections. The team used a 100-member ensemble of simulations by the Max Planck Institute Earth System Model (MPI-ESM) and a 50-member ensemble of simulations by the Canadian Earth System Model (CanESM2) to quantify the uncertainty caused by internal variability in the near-future projection of SASM rainfall. "We found that internal variability can eclipse the externally forced SASM rainfall change, leading to very different rainfall trends for next 15-30 years", explained Huang, "So we wanted to further identify the key internal mode responsible for the spread in the projected SASM rainfall". After analyzing the similarities and differences among the 150-member model projections, the team found a linkage between different realizations of the IPO phase and the spread in the SASM rainfall projection. Different IPO phase transitions can modulate the magnitude or even reverse the sign of the SASM rainfall trends. Thus, the IPO is identified as one of the leading internal modes influencing the near-term projection of SASM rainfall. "Historical data have already shown the signal of IPO in SASM change, but the climate projection community usually regarded the signal as noise in the projection. We show evidences that accounting for future IPO phase evolution helps effectively reduce the projection uncertainty of near-term SASM rainfall; in particular, it improves the projection of an extreme wetting or drying trend for the next 15-30 years", said Huang. The findings highlight the urgent need to predict IPO evolution for the next few decades. "A large part of climate change adaptation and mitigation activities is based on prognoses delivered by climate models, so a highly robust and reliable climate prediction is the base of policy decision making. This research provides a practical way of more reliably projecting near-term South Asian summer monsoon changes", the corresponding author Prof. Tianjun Zhou explained the importance of the study. Zhou is a member of CLIVAR (Climate and Ocean: Variability, Predictability and Change) / GEWEX (Global Water and Energy Exchanges) Monsoons Panel of World Climate Research Program (WCRP), and co-chair of Global Monsoons Model Intercomparison Project (GMMIP), which is a coordinated multi-model investigation into decadal variability of monsoons. According to Zhou, the study is part of GMMIP efforts devoting to improving the predictive skill for monsoons for the upcoming decades, which in turn will help policy-makers and stakeholders develop better climate strategies.
Jet stream not getting 'wavier' despite Arctic warming Exeter UK (SPX) Feb 24, 2020 Rapid Arctic warming has not led to a "wavier" jet stream around the mid-latitudes in recent decades, pioneering new research has shown. Scientists from the University of Exeter have studied the extent to which Arctic amplification - the faster rate of warming in the Arctic compared to places farther south - has affected the fluctuation of the jet stream's winding course over the North Hemisphere. Recent studies have suggested the warming Arctic region has led to a "wavier" jet stream - whic ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |