Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
More precise estimate of Avogadro's number to help redefine kilogram
by Staff Writers
Washington DC (SPX) Jul 15, 2015


The number of atoms in this silicon sphere is known given or taken 20 atoms each 10^9. The atom distance was measured by the X-ray interferometer on the left. Image courtesy Enrico Massa and Carlo Sasso.

An ongoing international effort to redefine the kilogram by 2018 has been helped by recent efforts from a team researchers from Italy, Japan and Germany to correlate two of the most precise measurements of Avogadro's number and obtain one averaged value that can be used for future calculations. Their results are published this week in the Journal of Physical and Chemical Reference Data, from AIP Publishing.

Avogadro's number is approximately 6.022x10^23 - an almost unfathomably large quantity, greater than the number of grains of sand on earth or even the number of stars in the universe. But the number, which represents the number of discrete particles like atoms or molecules in a "mole" of a substance, is a useful way to wrangle these tiny particles into more meaningful quantities.

A mole of water molecules, for instance, is only a few teaspoons of liquid. Because Avogadro's number is linked to a number of other physical constants, its value can be used to express other units, such as the kilogram.

The team has calculated Avogadro's number several times in the past. Each time, they obtained a value for Avogadro's number by counting the number of atoms in a one kilogram sphere of highly pure Si-28.

When silicon crystalizes, it forms cubic cells of eight atoms each. Thus, it is possible to calculate the number of atoms in such a sphere by examining the ratio between the total crystal volume and the volume occupied by each silicon atom, which can in turn be calculated by measuring the cubic cell.

Earlier this year, the group obtained a new value for Avogadro's number with an uncertainty of less than 20 atoms per billion - down from a 30-atom uncertainty in their 2011 value. But because both numbers have some degree of uncertainty, albeit a tiny one, it is more accurate to correlate them and then average them into one more neutral value: 6.02214082(11)x10^23. The number in parentheses represents the uncertainty of the last digit in the result.

From Avogadro's number to the kilogram
Currently, the kilogram weight standard is a platinum-iridium cylinder about the size of a golf ball, housed in the International Bureau of Weights and Measures in Sevres, France. But in a day and age when science is a truly global endeavor, having just one physical standard against which all others must be calibrated is an impediment to progress. Plus, the standard itself is subject to subtle fluctuations in mass over time due to surface reactions.

That's why the international metrology community is working to redefine the kilogram in terms of a constant of physics instead of a physical object. After years of discussion and research, the kilogram will be officially redefined in terms of Planck's constant in 2018.

However, redefining one of the SI units is far more complicated than updating the dictionary. "Prior to redefining the kilogram, we must demonstrate that the new realization is indistinguishable from the present one, to within the accuracy of the world's best balances," said Giovanni Mana, one of the lead researchers on the new paper.

"Otherwise, when changing from the present definition to the new one, all users in science, industry, and commerce must change the mass value of all the existing artefacts." Such adjustments would be time-consuming and inconvenient, and would leave ample room for error.

That's where Avogadro's number comes in. Before creating a new definition of the kilogram based on Planck's constant, metrologists must first be sure that the fixed value of Planck's constant is as good as possible. Because Planck's constant can be derived from Avogadro's number (and vice versa), using other fundamental constants known more precisely, a more precise definition of Avogadro's number also strengthens the definition of Planck's constant.

Even though fixing Avogadro's number will not be the official way to define the new mass standard, counting atoms remains an important check for the accuracy of the Planck's constant-based definition, as well as a way to put the definition in practice. The two kilogram measurements, reached by different means, should closely agree with each other.

Ultimately, the redefinition of the kilogram will make precision measurement more readily available to a greater number of labs. "In metrology, it is important to ensure independence and democracy, to avoid the monopoly of a single nation or laboratory," said Mana. Pinning down Avogadro's number is one small step in this direction.

"The absense of technologies to redefine the kilogram is the biggest impediment to a redefinition of the whole system of measurement units, which is expected to deliver even more solid foundations and reliability to precision measurements and to set the stage for further innovations in technology and science," said Mana.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
The quantum physics of artificial light harvesting
Vienna, Austria (SPX) Jul 14, 2015
Plants and bacteria make use of sunlight with remarkably high efficiency: nine out of ten absorbed light particles are being put to use in an ordinary bacterium. For years, it has been a pressing question of modern research whether or not effects from quantum physics are responsible for this outstanding performance of natural light harvesters. A team of European research groups, a co ... read more


TIME AND SPACE
Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

TIME AND SPACE
Opportunity Rover's 7th Mars Winter to Include New Study Area

Opportunity Gets Back to Work

NASA wants to send microbes to Mars to prepare for human habitation

Could This Become the First Mars Airplane

TIME AND SPACE
US selects four astronauts for commercial flight

Docking Adapter Sets Stage for Commercial Crew Crew

Targeted LEDs could provide efficient lighting for plants grown in space

NASA Gears Up to Test Orion's Powerhouse

TIME AND SPACE
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

TIME AND SPACE
'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

Loss of SpaceX Cargo Resupply Mission No Threat to ISS Crew Security

Russia launches Soyuz Progress with supplies for ISS

TIME AND SPACE
India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

Licensed commercial spaceport to be built in Houston, Texas

More Fidelity for SpaceX In-Flight Abort Reduces Risk

TIME AND SPACE
Observing the birth of a planet

Precise ages of largest number of stars hosting planets ever measured

Can Planets Be Rejuvenated Around Dead Stars?

Spiral arms cradle baby terrestrial planets

TIME AND SPACE
Lower cost ultrasound degassing now possible in processing aluminum

New technique enables magnetic patterns to be mapped in 3-D

New computer program may fix billion-dollar bit rot problem

Better memory with faster lasers




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.