24/7 Space News
STELLAR CHEMISTRY
Monster waves as tall as three suns are crashing upon a colossal star
About once a month, the two stars pass each other and a fresh monster wave barrels across the heartbreak star's surface. Cumulatively, this agitation has caused the big star in MACHO 80.7443.1718 to bulge at its equator by about 50% more than at its poles. And, with each new passing wave, more material is flung outward, like "spinning pizza crust flinging off chunks of cheese and sauce" says MacLeod. The signature glow of this atmosphere was one of the key clues that waves were breaking on the star's surface, according to MacLeod.
Monster waves as tall as three suns are crashing upon a colossal star
by Staff Writers
Cambridge MA (SPX) Aug 11, 2023

An extreme star system is giving new meaning to the phrase "surf's up." The star system intrigued researchers because it is the most dramatic "heartbeat star" on record. Now new models have revealed that titanic waves, generated by tides, are repeatedly breaking on one of the stars in the system-the first time this phenomenon has ever been seen on a star.

Heartbeat stars are stars in close pairs that periodically pulse in brightness, like the rhythm of a beating heart on an EKG machine. The stars in heartbeat systems loop through elongated oval orbits. Whenever they swing close together, the stars' gravities generate tides-just as the Moon creates ocean tides on Earth. The tides stretch and distort the shapes of the stars, altering the amount of starlight seen coming from them as their wide or narrow sides alternately face Earth.

A new study explains why the brightness fluctuations from one particularly extreme heartbeat star system measure some 200 times greater than typical heartbeat stars. The cause: gargantuan waves that roll across the bigger star, kicked up when its smaller companion star regularly makes close passes. These tidal waves attain such towering heights and high speeds, the study finds, that the waves break-similar to ocean waves-and crash down onto the big star's surface.

Dubbed a "heartbreak star" by astronomers, the system offers an unprecedented look at how massive stars interact.

"Each crash of the star's towering tidal waves releases enough energy to disintegrate our entire planet several hundred times over," says Morgan MacLeod, a Postdoctoral Fellow in Theoretical Astrophysics at the Center for Astrophysics | Harvard and Smithsonian (CfA) and author of a new study published in Nature Astronomy reporting the findings. "These are really big waves."

And yet, according to Professor Abraham (Avi) Loeb, MacLeod's advisor, the Director of the Institute for Theory and Computation at CfA and the paper's other author, "Breaking waves in stars are as beautiful as those on the beaches of our oceans."

Heartbeat stars were first seen when NASA's exoplanet-hunting Kepler space telescope picked out their telltale, usually subtle stellar brightness pulsations.

The extreme heartbreak star, though, is anything but subtle. The larger star in the system is nearly 35 times the mass of the Sun and, together with its smaller companion star, is officially designated MACHO 80.7443.1718 - not because of any stellar brawn, but because the system's brightness changes were first recorded by the MACHO Project in the 1990s, which sought signs of dark matter in our galaxy.

Most heartbeat stars vary in brightness only by about 0.1%, but MACHO 80.7443.1718 jumped out to astronomers because of its unprecedentedly dramatic brightness swings, up and down by 20%. "We don't know of any other heartbeat star that varies this wildly," says MacLeod.

To unravel the mystery, MacLeod created a computer model of MACHO 80.7443.1718. His model captured how the interacting gravity of the two stars generates massive tides in the bigger star. The resulting tidal waves rise to about a fifth of the behemoth star's radius, which equates to waves about as tall as three Suns stacked on top of each other, or roughly 2.7 million miles high.

The simulations show that the massive waves start out as smooth and organized swells, just like ocean water waves, before curling over on themselves and breaking. As beachgoers know, powerfully crashing ocean waves launch sea spray and bubbles, leaving "a big foamy mess" where there was once a smooth wave, MacLeod says.

The tremendous energy release of the crashing waves on MACHO 80.7443.1718 has two effects, MacLeod's model shows. It spins the stellar surface faster and faster, and hurls stellar gas outward to form a rotating and glowing stellar atmosphere.

About once a month, the two stars pass each other and a fresh monster wave barrels across the heartbreak star's surface. Cumulatively, this agitation has caused the big star in MACHO 80.7443.1718 to bulge at its equator by about 50% more than at its poles. And, with each new passing wave, more material is flung outward, like "spinning pizza crust flinging off chunks of cheese and sauce" says MacLeod. The signature glow of this atmosphere was one of the key clues that waves were breaking on the star's surface, according to MacLeod.

As unprecedented as MACHO 80.7443.1718 is, it is unlikely to be unique. Of the nearly 1,000 heartbeat stars discovered so far, about 20 of them display large brightness fluctuations approaching those of the system simulated by MacLeod and Loeb. "This heartbreak star could just be the first of a growing class of astronomical objects," MacLeod says. "We're already planning a search for more heartbreak stars, looking for the glowing atmospheres flung off by their breaking waves."

All things considered, MacLeod says we are lucky to have caught the star in this phase, "We are watching a brief and transformative moment in a long stellar lifetime." And by watching the colossal surf roll across a stellar surface, astronomers hope to gain an understanding of how close interactions shape the evolution of stellar pairs.

Research Report:Breaking waves on the surface of the heartbeat star MACHO 80.7443.1718

Related Links
Center for Astrophysics | Harvard and Smithsonian
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
The life and times of dust
Paris, France (SPX) Aug 01, 2023
This image shows the irregular galaxy NGC 6822, which was observed by the Near-InfraRed Camera (NIRCam) and Mid-InfraRed Instrument (MIRI) mounted on the NASA/ESA/CSA James Webb Space Telescope. As their names suggest, NIRCam and MIRI probe different parts of the electromagnetic spectrum. This allows the instruments to observe different components of the same galaxy, with MIRI especially sensitive to its gas-rich regions (the yellow swirls in this image) and NIRCam suitable for observing its densely pac ... read more

STELLAR CHEMISTRY
Indian lunar lander splits from propulsion module in key step

NASA challenges students to fly Earth and Space experiments

Virgin Galactic rockets its first tourist passengers into space

Embracing the future we need

STELLAR CHEMISTRY
China's Kuaizhou-1A rocket launches five new satellites

Pulsar Fusion forms partnership with University of Michigan for electric propulsion

China's commercial CERES-1 Y7 rocket launches 7 satellites

Musk says cage fight with Zuckerberg will be in Italy

STELLAR CHEMISTRY
Delight at Dream Lake

Cracks in ancient Martian mud surprise Curiosity team

A 'Blissful' Martian Rock Paradise, Straight Ahead: Sols 3919-3920

Engineers put a Mars lander legs to the test

STELLAR CHEMISTRY
China to launch "Innovation X Scientific Flight" program, applications open worldwide

Scientists reveal blueprint of China's lunar water-ice probe mission

Shenzhou 15 crew share memorable moments from Tiangong Station mission

China's Space Station Opens Doors to Global Scientific Community

STELLAR CHEMISTRY
Intelsat completes C-Band spectrum clearing for 5G Deployment

SpaceX successfully launches another batch of Starlink satellites

Atlas Credit Partners provides $100M strategic financing to AST SpaceMobile

ESA's Space Environment Report 2023

STELLAR CHEMISTRY
ESA integrates Satellite Orbit Decay Forecast service to enhance satellite safety

SwRI micropatch algorithm improves ground-to-spacecraft software update efficiency

Before the vacuum

De-orbiting PS4 stage in PSLV-C56 Mission

STELLAR CHEMISTRY
Watch an exoplanet's 17-year journey around its star

Exoplanet surveyor Ariel passes major milestone

The oldest and fastest evolving moss in the world might not survive climate change

Chemical contamination on International Space Station is out of this world

STELLAR CHEMISTRY
NASA's Europa probe gets a hotline to Earth

All Eyes on the Ice Giants

Hundred-year storms? That's how long they last on Saturn.

Looking for Light with New Horizons

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.