. 24/7 Space News .
TIME AND SPACE
Molecular magnetism packs power with 'messenger electron'
by Staff Writers
Madison WI (SPX) Nov 17, 2017


Atoms on adjacent molecules like this could be linked to form a long, magnetic chain, creating a new type of magnetic structure, says John Berry, a professor of chemistry at the University of Wisconsin-Madison.

Electrons can be a persuasive bunch, or at least, a talkative bunch, according to new work from John Berry's lab at the University of Wisconsin-Madison.

The spins of unpaired electrons are the root of permanent magnetism, and after 10 years of design and re-design, Berry's lab has made a molecule that gains magnetic strength through an unusual way of controlling those spins.

Berry says the new structure that graduate student Jill Chipman created could lead to a breakthrough in quantum computing, an approach with such great potential that it could undermine today's silicon-based supercomputers much as the telephone did the telegraph: A great leap forward that begins a slide into irrelevance.

The presence and activity, or "spin," of unpaired electrons sets the strength of a permanent magnet, so molecules with a high degree of spin are a desirable target for chemists. The unusually large spin in the new magnetic molecule, Berry explains, results from a "messenger electron" that shuttles between an unpaired electron at each end of the rod-shaped molecule and persuades all three of them to adopt the same spin.

That agreement of spin, "orthogonality" in the jargon, adds strength to a permanent magnet.

Berry, a UW-Madison professor of chemistry, notes that in other materials, a traveling electron tends to oppose the spins of magnetic centers, reducing the magnetic strength. In Chipman's new creation, however, the messenger electron is focused on harmony: like a traveling social worker, it causes the two remote unpaired electrons to take the same spin, adding strength and/or durability.

The new molecule, described in Chemistry - A European Journal, contains carbon, nickel, chlorine, nitrogen, and molybdenum, but lacks the costly rare earth elements that have bedeviled efforts to commercialize super-strong new magnets. Its structure suggests that the molecule could be formed into a polymer - a repeating chain of units like those found in plastics - raising the possibility of cheaper, stronger magnets.

"We tried to remove electrons from this molecule 10 years ago so it had an unpaired electron at each end, but did not get far," Berry says. "We since learned that this made a chemical that is really temperature-sensitive, so Jill had to develop a low-temperature process that relies on dry ice to cool it to -78 degrees C."

The "traveling social worker" electron establishes "a design principle that could be used to create many new magnetic molecules that behave as little bar magnets," Berry says.

The discovery was also enabled by the arrival last summer an instrument called a SQUID magnetometer (Superconducting QUantum Interference Device) that can measure magnetism with great accuracy down to below 2 degrees above absolute zero.

Much of the focus of magnet innovation concerns greater strength, Berry says, "but there are all sorts of things people look for. We need both permanent magnets and those with ephemeral magnetization for different technical reasons. Magnets are widespread in ultra-cold refrigeration, motors, computer hard drives and electronic circuits."

By going the next step, and miniaturizing magnets to a single molecule, that could enable quantum computing, Berry says. Quantum computing could be especially beneficial to chemists, who confront staggering complexity in trying to model the chemical reactions that are their bread and butter.

TIME AND SPACE
A quasiparticle quest
Santa Barbara CA (SPX) Nov 09, 2017
What kinds of 'particles' are allowed by nature? The answer lies in the theory of quantum mechanics, which describes the microscopic world. In a bid to stretch the boundaries of our understanding of the quantum world, UC Santa Barbara researchers have developed a device that could prove the existence of non-Abelian anyons, a quantum particle that has been mathematically predicted to exist ... read more

Related Links
University of Wisconsin-Madison
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Stressed seedlings in space

NASA Completes Review of First SLS, Orion Deep Space Exploration Mission

Science has more impact when researchers travel, collaborate

Brazil's tech junkies seek healing at digital detox clinic

TIME AND SPACE
Vega launches Earth observation satellite for Morocco

Orbital ATK Successfully Tests First Motor Case for Next Generation Launch Vehicle

Russia embezzlement probe at rocket firm Soyuz

Alaska Aerospace Launches Aurora Launch Services Company

TIME AND SPACE
NASA Opens $2 Million Third Phase of 3D-Printed Habitat Competition

How long can microorganisms live on Mars

Insight will carry over two million names to Mars

Opportunity Does a Wheelie and is Back on Solid Footing

TIME AND SPACE
China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

TIME AND SPACE
European Space Week starts in Estonia

New Chinese sat comms company awaits approval

Myanmar to launch own satellite system-2 in 2019: vice president

Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

TIME AND SPACE
Research highlights ethical sourcing of materials for modern technology

A new way to mix oil and water

Diagonal methods for expensive global optimization developed by Russian scientists

The environmental implications of 3-D printing

TIME AND SPACE
Scientists find potential 'missing link' in chemistry that led to life on earth

18-Month Twinkle in a Forming Star Suggests a Very Young Planet

Overlooked Treasure: The First Evidence of Exoplanets

Atmospheric beacons guide NASA scientists in search for life

TIME AND SPACE
Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

Juno Aces 8th Science Pass of Jupiter, Names New Project Manager

Jupiter's X-ray auroras pulse independently









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.