. 24/7 Space News .
Mimicking nature for programmable and adaptive synthetic materials
by Staff Writers
Bangalore, India (SPX) Jan 29, 2019

Illustration showing the schematic of stimuli controlled living polymerization.

Biological systems are truly representative of a complex macroscopic phenomenon being acutely controlled by microscopic chemical reaction networks. As a chemist's dream to create a lifelike adaptive and responsive material rages on, research has intensified to create synthetic mimics of rudimentary biological processes.

One such biological process is controlled growth of cytoskeletal proteins. Apart from acting as nano skeleton to maintain cell shape, assemblies of these proteins are responsible for distributing nutrients inside a cell. This results in them controlling almost every important process inside the cell, from division to force distribution.

It would be safe to presume that assembly control pathways of these proteins are a key contributor in a cell's adaptive and responsive behaviour. The key part of this process is an ATP fuelled metabolic system that programmes the rate of growth and decay of these assemblies in a time-related (temporal) manner. Close control is also maintained on the size of these assemblies as size directly relates to the functional efficacy of a system.

In a recently published work in Nature Communications on Jan 25, 2019, scientists from the Jawaharlal Nehru Centre for Advanced Science and Research (JNCASR) and the Institute for Stem Cell Biology and Regenerative Medicine (inStem) have successfully created a minimalistic synthetic mimic of aforementioned cytoskeletal networks with structural and temporal programming. The work focuses on reaction driven controlled growth a two-component monomeric molecular system.

"This synthetic monomeric system is elegantly designed, so as to give rise to a primary reaction that would convert an inactive (non-assembling) monomeric system into an active one (which triggers assembly) upon addition of alkyl amines (fuel)," said Dr. Subi George, Associate Professor at JNCASR.

They show that this reaction can be used to precisely control the one-dimensional growth (nanofibers) of resulting assemblies through controlled availability of "fuel".

The growth of these nanofibrous structures are driven by very weak intermolecular interactions (termed as 'supramolecular polymerization' process) such as hydrophobic (similar to lipid bilayers in membranes) and aromatic interactions (similar to stacking of nucleobases in DNA) and hence are highly dynamic and have self-repairing features like many biological assemblies.

"While biological systems elegantly modulate self-assembly with a great precision, imparting transient and living polymerization property in chemical amphiphiles has been daunting task thus far. Design of an in-situ forming amphiphile enabled us to study the dynamic assembled structures at will," said Dr. Praveen Kumar Vemula, Asst. Investigator at inStem.

Through detailed spectroscopic and microscopic analyses, they establish this growth to be "living" in nature giving assemblies with very narrow size distribution (monodisperse). The system was further developed by coupling the growth with uniquely chosen chemical scenarios such that a unique control over the growth as well as the disassembly kinetics was established.

As a result, a time-programmed transient network of fibrous assemblies could be realized. In both cases the manipulation of key temporal characteristics was from the range of few seconds to thousands of seconds. This study thus represents a key step in the development of adaptive, lifelike, supramolecular materials.

"We have for the first time demonstrated that every temporal characteristic of supramolecular polymerization can be chemically controlled and further coupled to other participating reactions similar to a biological system," said Ankit Jain, lead author of the paper.

"Controlling the self-assembled nano-architectures using stimuli such as enzymes and pH has been fascinating," says Ashish Dhayani, author of the paper.

"This work is a significant advancement to design bio-mimetic active systems operating under out of equilibrium conditions, with spatio-temporal programming compared to the majority of the synthetic passive systems reported so far, which work under thermodynamic equilibrium with only spatial complexity." said Shikha Dhiman, co-author of the paper.

The next challenge is to build synthetic lifelike systems that can think, learn and adapt as the living beings do. This study is one such initial step but there is still a long run for scientists to be able to do what nature does. The team is optimistic to apply this principle and utilize the dynamic self-assembly nano-architectures in the biological systems.

Research paper

Related Links
National Centre for Biological Sciences
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

What atoms do when liquids and gases meet
Madrid, Spain (SPX) Jan 25, 2019
Although this is correct on larger scales, the assumption fails on smaller scales, according to various experiments and computer simulations carried out in recent decades. In an article recently published in Nature Physics, a group of mathematicians from Universidad Carlos III de Madrid (UC3M) and Imperial College London have come up with a new approach that solves this problem. When materials are in a solid state, their atoms are arranged in very uniform patterns, like grids, sheets and lattices. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Duration of UAE Astronaut's Mission on Board ISS Reduced to 8 Days

NASA Announces Updated Crew Assignment for Boeing Flight Test

China is growing crops on the far side of the moon

Beans to be next vegetable on astronauts' menu by 2021

Japan launches Epsilon-4 Rocket with 7 satellites

United Launch Alliance Successfully Launches NROL-71 in Support of National Security

Air Force and its mission partners successfully launch NROL71

Russia ready to design new super heavy rocket says Rogozin

Dust storm activity appears to pick up south of Opportunity

ExoMars software passes ESA Mars Yard driving test

Team selected by Canadian Space Agency to study Mars minerals

UK tests self driving robots for Mars

China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

mu Space unveils plan to bid for space exploration projects

Airbus wins DARPA contract to develop smallsat bus for Blackjack program

A new era of global aircraft surveillance is on the horizon as Aireon completes system deployment

How much do European citizens know about space?

'The new oil': Dublin strikes it rich as Europe's data hub

Materials that open in the heat of the moment

What atoms do when liquids and gases meet

New technology uses lasers to transmit audible messages to specific people

Double star system flips planet-forming disk into pole position

The Truth is Out There: New Online SETI Tool Tracks Alien Searches

First comprehensive, interactive tool to track SETI searches

Potential for life on planet around Barnard's Star

Juno's Latest Flyby of Jupiter Captures Two Massive Storms

Outer Solar System Orbits Not Likely Caused by "Planet Nine"

Scientist Anticipated "Snowman" Asteroid Appearance

New Ultima Thule Discoveries from NASA's New Horizons

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.