. 24/7 Space News .
STELLAR CHEMISTRY
Microscopic roundabout directs light without a magnet
by Brooks Hays
Washington DC (UPI) May 04, 2018

Circulators direct light on optical chips, a process essential to communication technology. The component relies on a tiny magnet, but miniaturizing magnets is difficult.

Enter the magnet-free optical circulator. The roundabout can route light without the assistance of a tiny magnet. Researchers say it's the first of its kind.

Using a unique combination of entrance and exit ports, circulators ensure that light is directed to the proper place and that no light -- or information -- is lost on the path from one port to another.

"Light propagation is symmetric in nature, which means if light can propagate from A to B, the reverse path is equally possible. We need a trick to break the symmetry," lead researcher Ewold Verhagen, scientist at the Dutch research institute AMOLF, said in a news release. "Usually this 'trick' is using centimeter-sized magnets to impart directionality and break the symmetric nature of light propagation. Such systems are difficult to miniaturize for use on photonic chips."

Verhagen and his research partners, including scientists from the University of Texas, replaced the magnetized circulator with a microscale glass ring resonator. Structural vibrations control when light can exit and where.

"By shining light of a 'control' laser in the ring, light of a different color can excite vibrations through a force known as radiation pressure, but only if it propagates in the same direction as the control light wave," Verhagen said. "Since light propagates differently through a vibrating structure than through a structure that is standing still, the optical force breaks symmetry in the same way as a magnetic field would."

Scientists still had to find a way to ensure the propagated light exited at the proper port, the next available exit. They realized the control laser can use a phenomenon called optical interference to propagate the light out of a specific exit.

"We demonstrated this circulation in experiments, and showed that it can be actively tuned," said postdoc John Mathew. "The frequency and power of the control laser allow the circulation to be turned on and off and change handedness."

The breakthrough -- detailed in the journal Nature Communications -- could do more than improve communication technologies, it could also power quantum computers.

"The fact that the circulator can be actively controlled provides additional functionality as the optical circuits can be reconfigured at will," Verhagen said.


Related Links
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Picking one photon out of the flow
Odense, Denmark (SPX) May 04, 2018
In a collaboration between Aarhus University and the University of Southern Denmark, researchers have discovered a way to subtract a single quantum of light from a laser beam. This work has recently been published and selected as an Editor's Suggestion in Physical Review Letters. This method paves the way towards future quantum communication and computation using the subtle aspects of quantum mechanics for technological applications. Light is made up of little indivisible packets of en ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Russia Offers Space Tourist Flight to US, European Astronauts, UAE Citizen

Jim Bridenstine brings understanding of commercial technology to his new role as NASA Admin

Tourism nearly a tenth of global CO2 emissions

Why plants are so sensitive to gravity: The lowdown

STELLAR CHEMISTRY
TDM Bridge Builder: Daniel Herman, Solar Electric Propulsion System Lead

SpaceX's Dragon cargo ship returns to Earth

Reduce, Reuse, Rockets?

Return of SpaceX cargo ship delayed by rough seas

STELLAR CHEMISTRY
Mars growth stunted by early giant planetary instability

InSight probe to survey Mars for secrets inside the planet

NASA's newest Mars lander to study quakes on Red Planet

NASA blasts off Mars-bound spaceship, InSight, to study quakes

STELLAR CHEMISTRY
China to Use Soviet Engine to Power Its First Reusable Space Rocket

Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

STELLAR CHEMISTRY
In crowded field, Iraq election hopefuls vie to stand out

ESA selects three new mission concepts for study

Australian Space Agency Lost In Canberra

China's communication satellites occupy niche in world market

STELLAR CHEMISTRY
Lasers in Space: Earth Mission Tests New Technology

China rejects US military claims of laser attacks on pilots

AF plans to accelerate defendable space with Next-Gen OPIR

Can this invasive exotic pest make better materials for industry and medicine?

STELLAR CHEMISTRY
An Exoplanet Atmosphere Free of Clouds

Dutch astronomers photograph possible toddler planet by chance

The Cheops ccience instrument arrives in Madrid

Hubble detects helium in the atmosphere of an exoplanet for the first time

STELLAR CHEMISTRY
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.