. | . |
Microchip offer Low-Power Radiation-Tolerant PolarFire FPGA ahead of spaceflight qualification by Staff Writers Chandler AZ (SPX) Dec 03, 2020
Microchip Technology has begun shipping engineering silicon for its RT PolarFire Field Programmable Gate Array (FPGA) while the device is being qualified to spaceflight component reliability standards. Designers can now create hardware prototypes with all the same electrical and mechanical performance that the space-qualified RT PolarFire FPGAs will provide for high-bandwidth on-orbit processing systems with industry-low power consumption and the ability to withstand radiation effects in space. "This is a major milestone as we release RT PolarFire FPGA engineering silicon to our customers and begin the spaceflight qualification process through full QML Class V standards," said Bruce Weyer, vice president of Microchip's FPGA business unit. "Many of our customers have already jump-started satellite system payload development using our commercial PolarFire MPF500T FPGAs and now all prototyping can be done with silicon that will be identical in form, fit and function to our eventual flight-qualified RT PolarFire FPGAs." Microchip is qualifying its RT PolarFire RTPF500T FPGAs to Mil Std 883 Class B, QML Class Q and QML Class V - the highest qualification and screening standard for monolithic integrated circuits in space. Designed to survive a rocket launch and meet demanding performance needs in space, RT PolarFire FPGAs are ideal for applications including high-resolution passive and active imaging, precision remote scientific measurement, multi-spectral and hyper-spectral imaging, and object detection and recognition using neural networks. These applications require high levels of operating performance and density, low heat dissipation, low power consumption and low system-level costs. Microchip's RT PolarFire FPGAs increase computational performance so satellite payloads can transmit processed information rather than raw data and make optimal use of limited downlink bandwidth. The devices exceed the performance, logic density and serializer-deserializer (SERDES) bandwidth of any other currently available space-qualified FPGA. They also enable more system complexity than previous FPGAs and withstand Total Ionizing Dose (TID) exposure beyond the 100 kilorads (kRads) typical of most earth-orbiting satellites and many deep-space missions. Their power-efficient architecture reduces power consumption up to 50 percent compared to SRAM FPGAs, leveraging SONOS configuration switches that also eliminate the problem of configuration upsets due to radiation in space. The RT PolarFire RTPF500T FPGA engineering models are available in a hermetically sealed ceramic package with land grid, solder ball and solder column termination options. They are supported by development boards, Microchip's Libero software tool suite and radiation data. Additional information is available here.
Radiation Hard Lenses for Satellite UHD Video Cameras Chesham UK (SPX) Nov 11, 2020 Resolve Optics has supplied video streaming specialists - Sen (Didcot, UK) with radiation hard lenses for their satellite-based Ultra-High Definition (UHD) video cameras. Sen launched its first set of UHD video cameras into space in 2019 and successfully demonstrated the excellent performance of its video streaming platform. The next step in Sen's plan is to launch its own satellite constellation so that it has full control over its live data stream. To make technology work in space is not s ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |