. 24/7 Space News .
ROBO SPACE
Microbots individually controlled using 'mini force fields'
by Staff Writers
West Lafayette IN (SPX) Jan 15, 2016


This image shows how two microbots can be independently controlled when operating within a group, an advance aimed at using the tiny machines for applications such as advanced manufacturing and biomedical research. Image courtesy Purdue University and David Cappelleri. For a larger version of this image please go here.

Researchers are using a technology likened to "mini force fields" to independently control individual microrobots operating within groups, an advance aimed at using the tiny machines in areas including manufacturing and medicine.

Until now it was only possible to control groups of microbots to move generally in unison, said David Cappelleri, an assistant professor of mechanical engineering at Purdue University.

"The reason we want independent movement of each robot is so they can do cooperative manipulation tasks," he said. "Think of ants. They can independently move, yet all work together to perform tasks such as lifting and moving things. We want to be able to control them individually so we can have some robots here doing one thing, and some robots there doing something else at the same time."

Findings are detailed in a research paper appearing this month in the journal Micromachines. Postdoctoral research associates Sagar Chowdhury and Wuming Jing, and Cappelleri authored the paper.

The team developed a system for controlling the robots with individual magnetic fields from an array of tiny planar coils.

"The robots are too small to put batteries on them, so they can't have onboard power," Cappelleri said. "You need to use an external way to power them. We use magnetic fields to generate forces on the robots. It's like using mini force fields."

The research is revealing precisely how to control the robots individually.

"We need to know, if a robot is here and it needs to go there, how much force needs to be applied to the robot to get it from point A to point B?" Cappelleri said. "Once you figure out what that force has to be, then we say, what kind of magnetic field strength do we need to generate that force?"

The microbots are magnetic disks that slide across a surface (shown in this video). While the versions studied are around 2 millimeters in diameter - about twice the size of a pinhead - researches aim to create microbots that are around 250 microns in diameter, or roughly the size of a dust mite.

In previously developed systems the microbots were controlled using fewer coils located around the perimeter of the "workspace" containing the tiny machines. However, this "global" field is not fine enough to control individual microrobots independently.

"The approach we came up with works at the microscale, and it will be the first one that can give truly independent motion of multiple microrobots in the same workspace because we are able to produce localized fields as opposed to a global field," Cappelleri said. "What we can do now, instead of having these coils all around on the outside, is to print planar coils directly onto the substrate."

The robots are moved using attractive or repulsive forces and by varying the strength of the electrical current in the coils.

"You can think about using teams of robots to assemble components on a small scale, which we could use for microscale additive manufacturing," Cappelleri said.

Independently controlled microbots working in groups might be useful in building microelectromechanical systems, or MEMS, minuscule machines that could have numerous applications from medicine to homeland security.

"So far people have been good at making MEMS devices containing different components," he said. "But a lot of times the components are made from different processes and then have to be assembled to make the final device. This is very challenging. We can instead assemble them with our robots. And on the biological side we might use them for cell sorting, cell manipulation, characterization and so on. You could think about putting the microcoils on the bottom of a petri dish."

Microbots equipped with probe-like "force sensors" might then be used to detect cancer cells in a biopsy.

"Cancer cells have different stiffness characteristics than non-cancer cells, and in some of our previous work we put force sensors on the end of these robots to figure out which ones are stiffer than others," Cappelleri said.

The coils were made by printing a copper pattern with the same technology used to manufacture printed circuit boards. They can be scaled down from their current size of about 4 millimeters. A new process, however, was needed to create a microscale prototype, he said.

The research is ongoing. The team will attempt to use microscale prototypes to assemble components for MEMS devices. One potential obstacle is the effect of van der Waals forces between molecules that are present on the scale of microns but not on the macroscale of everyday life.

The forces might cause "stiction" between tiny components that affect their operation.

Towards Independent Control of Multiple Magnetic Mobile Microrobots; Sagar Chowdhury, Wuming Jing and David J. Cappelleri - School of Mechanical Engineering, Purdue University.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Purdue University
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
U.S. Marine Corps rules out robotic dog, mule
Washington (UPI) Jan 01, 2016
The U.S. Marine Corps has decided its Legged Squad Support System, or LS3, also known as the "robotic mule," is too loud to use on the battlefield. The Marines began testing the robotic mule in a series of training events in September, although officials at the Defense Advanced Research Projects Agency said the gas-powered quadruped would likely never see actual combat. The robot ... read more


ROBO SPACE
Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

South Korea to launch lunar exploration in 2016, land by 2020

Death rumors of Russian lunar program 'greatly exaggerated' - Deputy PM

ROBO SPACE
Rover Rounds Martian Dune to Get to the Other Side

Boulders on a Martian Landslide

NASA suspends March launch of InSight mission to Mars

University researchers test prototype spacesuits at Kennedy

ROBO SPACE
Six Orion Milestones to Track in 2016

Gadgets get smarter, friendlier at CES show

Congress to NASA: Hurry up on that 'habitation augmentation module'

NASA Reaches New Heights

ROBO SPACE
China's Belt and Road Initiative catches world's imagination: Inmarsat CEO

China launches HD earth observation satellite

Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

ROBO SPACE
British astronaut's first spacewalk set for Jan 15

NASA Delivers New Video Experience On ISS

British astronaut dials wrong number on Xmas call from space

Space Station Receives New Space Tool to Help Locate Ammonia Leaks

ROBO SPACE
Arianespace starts year with record order backlog

Russian Space Forces launched 21 spacecraft in 2015

Russian Proton-M Carrier Rocket With Express-AMU1 Satellite Launched

45th Space Wing launches ORBCOMM; historically lands first stage booster

ROBO SPACE
Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

ROBO SPACE
China chemical giant to acquire Germany's KraussMaffei

How seashells get their strength

Tech tethers dog lovers remotely to their pets

Thor's hammer to crush materials at 1 million atmospheres









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.