. 24/7 Space News .
STELLAR CHEMISTRY
Metamaterial tiles boost sensitivity of large telescopes
by Staff Writers
Washington DC (SPX) Jan 27, 2021

Researchers developed new metamaterial tiles that will improve the sensitivity of telescopes at the Simons Observatory by absorbing stray light. The top left photo shows one tile, with its anti-reflective surface shown in the insert. The bottom left photos show the back of the tile, and the right photo shows the assembly of 240 tiles installed on the wall of an optics tube.

A multi-institutional group of researchers has developed new metamaterial tiles that will help improve the sensitivity of telescopes being built at the preeminent Simons Observatory in Chile. The tiles have been incorporated into receivers that will be deployed at the observatory by 2022.

The Simons Observatory is the center of an ambitious effort to measure the cosmic microwave background - electromagnetic radiation left over from an early stage of the universe - using some of the world's largest and most sophisticated ground-based telescopes. These measurements will help improve our understanding of how the universe began, what it is made of and how it evolved into what it is today.

"The Simons Observatory telescopes will use a new ultra-sensitive millimeter-wave camera to measure the afterglow of the big bang with unprecedented sensitivity," said lead author Zhilei Xu from the University of Pennsylvania. "We developed a new low-cost absorbing tile that will be used in the camera to absorb environmental emissions that can obscure the signals we want to measure."

In the Optical Society (OSA) journal Applied Optics, the researchers show that the metamaterial microwave tiles they developed absorb more than 99 percent of millimeter wave radiation and retain their absorptive properties at the extremely low temperatures in which the millimeter-wave camera operates.

"Because the tiles can be made by injection molding commercially available materials, they are an economic, mass-producible and easy-to-install solution to what has been a long-standing problem," said Xu. "With this technology, the Simons Observatory will transform our understanding of the universe from many aspects, including the beginning of the universe, the formation and evolution of the galaxies and the ignition of the first stars."

Working at low temperatures
Ground-based millimeter-wave telescopes use receivers that are cooled to cryogenic temperatures to reduce noise and thus boost sensitivity. Receiver technology has advanced to the point where any amount of stray light can degrade the image while also decreasing the sensitivity of the detector. A better way to suppress stray light within the receivers would further increase their sensitivity to the very faint signals coming from deep within space.

However, developing a material that can suppress stray light while operating at such extremely low temperatures is quite challenging. Previous attempts resulted in materials that either couldn't be cooled effectively to cryogenic temperatures or didn't achieve the necessary combination of low reflectance and high absorption. Other solutions have also tended to be difficult to install or challenging to mass produce.

To overcome these challenges, the researchers turned to metamaterials because they can be engineered to achieve specific properties that don't occur in nature. After complex electromagnetic simulation studies, the researchers designed metamaterials based on a material that combined carbon particles and plastic.

Reducing reflection
Although the plastic composite exhibited high absorption in the desired microwave region of the electromagnetic spectrum, the surface reflected a significant amount of radiation before it could get inside the material to be absorbed. To reduce the reflection, the researchers added an anti-reflective coating that was tailored using injection molding.

"The low-reflectance surface combined with high-absorption bulk material allowed the metamaterial absorber tiles to deliver excellent suppression of unwanted signals at cryogenic temperatures close to absolute zero," said Xu.

After ensuring that tiles made of the new metamaterial could mechanically survive thermal cycles from room temperatures to cryogenic temperatures, the researchers verified that they could be effectively cooled to -272 C (-458 F) and then measured their optical performance. "We developed a custom test facility to measure the performance of the tiles with high fidelity," said Grace Chesmore, a graduate student at the University of Chicago who led the optical measurements of this research. The testing showed that the metamaterial exhibited excellent reflectance properties with low scattering and that it absorbed almost all of the incoming photons.

"As detector sensitivity continues to improve for millimeter-wave telescopes, it becomes crucial to control scattered photons," said Xu. "The successful combination of a metamaterial and injection molding manufacturing opens up many possibilities for millimeter-wave instrument scientific instrument design."

Research Report: "The Simons Observatory: Metamaterial Microwave Absorber (MMA) and its Cryogenic Applications"


Related Links
The Optical Society
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Roman Telescope will probe galaxy's core for hot Jupiters, brown dwarfs
Greenbelt MD (SPX) Jan 26, 2021
When it launches in the mid-2020s, NASA's Nancy Grace Roman Space Telescope will explore an expansive range of infrared astrophysics topics. One eagerly anticipated survey will use a gravitational effect called microlensing to reveal thousands of worlds that are similar to the planets in our solar system. Now, a new study shows that the same survey will also unveil more extreme planets and planet-like bodies in the heart of the Milky Way galaxy, thanks to their gravitational tug on the stars they orbit. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA and Boeing target new launch date for next Starliner flight test

NASA may limit its presence in Russia over shrinking cooperation on ISS

Bridenstine leaves NASA, calls for unity in space, science efforts

Tourism on track in the world's largest cave

STELLAR CHEMISTRY
NASA Marshall, SpaceX team celebrates engines of success

Framework agreement facilitates future slot bookings by ESA

Hot Fire met many objectives, test assessment underway

Iodine thruster could slow space junk accumulation

STELLAR CHEMISTRY
New Mars rover may collect first sounds recorded on another planet

Six things to know about NASA's Mars helicopter on its way to Mars

Crater study offers window on temperatures 3.5 billion years ago

Mystery of Martian glaciers revealed

STELLAR CHEMISTRY
China's space tracking ship completes satellite launch monitoring

Key modules for China's next space station ready for launch

China's space station core module, cargo craft pass factory review

Major space station components cleared for operations

STELLAR CHEMISTRY
Kepler Communications announces successful launch of 8 new GEN1 satellites

OneWeb secures investment from Softbank and Hughes Network Systems

China launches new mobile telecommunication satellite

Astronauts to boost European connectivity

STELLAR CHEMISTRY
3D printing to pave the way for Moon colonization

NASA's Deep Space Network welcomes a new dish to the family

Record-breaking laser may help test Einstein's theory of relativity

Keep this surface dirty

STELLAR CHEMISTRY
CHEOPS finds unique planetary system

Holding the system of HR 8799 together

The seven rocky planets of TRAPPIST-1 seem to have very similar compositions

The 7 rocky TRAPPIST-1 planets may be made of similar stuff

STELLAR CHEMISTRY
A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth

Juno mission expands into the future

Dark Storm on Neptune reverses direction, possibly shedding a fragment









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.