Subscribe free to our newsletters via your
. 24/7 Space News .

Mercury's contraction much greater than thought
by Staff Writers
Washington DC (SPX) Mar 18, 2014

This image shows a long collection of ridges and scarps on the planet Mercury called a fold-and-thrust belt. The belt stretches over 336 miles (540 kilometers). The colors correspond to elevation -- yellow-green is high and blue is low. Image courtesy NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.

New global imaging and topographic data from MESSENGER* show that the innermost planet has contracted far more than previous estimates. The results are based on a global study of more than 5,900 geological landforms, such as curving cliff-like scarps and wrinkle ridges, that have resulted from the planet's contraction as Mercury cooled.

The findings, published online March 16, 2014, in Nature Geoscience, are key to understanding the planet's thermal, tectonic, and volcanic history, and the structure of its unusually large metallic core.

Unlike Earth, with its numerous tectonic plates, Mercury has a single rigid, top rocky layer. Prior to the MESSENGER mission only about 45% of Mercury's surface had been imaged by a spacecraft.

Old estimates, based on this non-global coverage, suggested that the planet had contracted radially by about 0.5 to 2 miles (0.8 to 3 kilometers) substantially less than that indicated by models of the planet's thermal history. Those models predicted a radial contraction of about 3 to 6 miles (5 to 10 kilometers) starting from the late heavy bombardment of the Solar System, which ended about 3.8 billion years ago.

The new results, which are based on the first comprehensive survey of the planet's surface, show that Mercury contracted radially by as much as 4.4 miles (7 kilometers)-substantially more than the old estimates, but in agreement with the thermal models. Mercury's modern radius is 1,516 miles (2,440 kilometers).

"These new results resolved a decades-old paradox between thermal history models and estimates of Mercury's contraction," remarked lead author of the study, Paul Byrne, a planetary geologist and MESSENGER visiting investigator at Carnegie's Department of Terrestrial Magnetism.

"Now the history of heat production and loss and global contraction are consistent. Interestingly, our findings are also reminiscent of now-obsolete models for how large-scale geological deformation occurred on Earth when the scientific community thought that the Earth only had one tectonic plate. Those models were developed to explain mountain building and tectonic activity in the nineteenth century, before plate tectonics theory."

Byrne and his coauthors identified a much greater number and variety of geological structures on the planet than had been recognized in previous research. They identified 5,934 ridges and scarps attributed to global contraction, which ranged from 5 to 560 miles (9 to 900 kilometers) in length.

The researchers used two complementary techniques to estimate the contraction from their global survey of structures. Although the two estimates of radius change differed by 0.6 to 1 mile (1 to 1.6 kilometers), both were substantially greater than old estimates.

"I became interested in the thermal evolution of Mercury's interior when the Mariner 10 spacecraft sent back images of the planet's great scarps in 1974-75, but the thermal history models predicted much more global contraction than the geologists inferred from the scarps then observed, even correcting for the fact that Mariner 10 imaged less than half of Mercury's surface," noted Sean Solomon, principal investigator of the mission.

"This discrepancy between theory and observation, a major puzzle for four decades, has finally been resolved. It is wonderfully affirming to see that our theoretical understanding is at last matched by geological evidence."

Authors on the paper are Paul Byrne, Carnegie and the Lunar and Planetary Institute; Christian Klimczak, Carnegie; A. M. Celal Sengor, Eurasia Institute of Earth Sciences; Sean Solomon, Carnegie and Lamont-Doherty Earth Observatory; Thomas Watters, Smithsonian; and Steven Hauk, II, Case Western University.


Related Links
Carnegie Institution
News Flash at Mercury
Mars News and Information at
Lunar Dreams and more

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Mercury, the incredible shrinking planet
Paris (AFP) March 16, 2014
Beneath its Sun-scorched exterior, the planet Mercury is cooling, which is causing it to shrink ever so slightly, scientists said Sunday. Over the last 3.8 billion years, the planet has shrunk by up to 14 kilometers (8.8 miles) to reach its present diameter of 4,800 km (3,032 miles), they said. Mercury, like Earth, is believed to have a superhot metallic core. But unlike Earth, it ha ... read more

China's Jade Rabbit lunar rover rouses from latest slumber

NASA Releases First Interactive Mosaic of Lunar North Pole

Study on lunar crater counting shows crowdsourcing effective, accurate tool

Spacesuits And Moon Notes Among The Stars At Bonhams NYC Auction

The Exploration of Murray Ridge Continues

Mars Reconnaissance Orbiter Resumes Full Duty

NASA Orbiter Safe After Unplanned Computer Swap

Mars name-a-crater scheme runs into trouble

Astronauts train at Maxwell

ORBITEC and Wisconsin Await Countdown for "VEGGIE" to Space on SpaceX 3

Orion Makes Testing, Integration Strides Ahead of First Launch to Space

Global patent filings jump 5.1% in 2013: WIPO

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

ESA astronaut Thomas Pesquet will fly to the ISS in 2016

Russian Progress Spacecraft Boosts ISS Orbit

Japanese astronaut becomes ISS commander

Station Crew Preps for Return to Earth, Repairs Recycling System

Proton-M with two Russian communication satellites on board blasts off from Baikonur

Proton-M carrier rocket with two satellites abroad installed on Baikonur launch pad

Lockheed Martin Commercial Launch Services Announces Industry-Unique "Refund Or Reflight" Program

ASTRA 5B delivered for integration on Ariane 5 launcher

UK joins the planet hunt with Europe's PLATO mission

X-ray laser FLASH spies deep into giant gas planets

Crashing Comets Explain Surprise Gas Clump Around Young Star

Every red dwarf star has at least one planet

Heat-Based Technique Offers New Way to Measure Microscopic Particles

ISS dodges space junk

3D X-ray Film: Rapid Movements in Real Time

Reducing debris threat from satellite batteries

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.