. 24/7 Space News .
EARTH OBSERVATION
Measuring photosynthesis on Earth from space
by Staff Writers
Urbana IL (SPX) Feb 17, 2021

stock illustration only

As most of us learned in school, plants use sunlight to synthesize carbon dioxide (CO2) and water into carbohydrates in a process called photosynthesis. But nature's "factories" don't just provide us with food - they also generate insights into how ecosystems will react to a changing climate and carbon-filled atmosphere.

Because of their ability to make valuable products from organic compounds like CO2, plants are known as "primary producers." Gross primary production (GPP), which quantifies the rate of CO2 fixation in plants through photosynthesis, is a key metric to track the health and performance of any plant-based ecosystem.

A research team with the U.S. Department of Energy's Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) at the University of Illinois Urbana-Champaign developed a product to accurately measure GPP: the SatelLite Only Photosynthesis Estimation Gross Primary Production (SLOPE GPP) product at a daily time step and field-scale spatial resolution.

The team leveraged the Blue Waters supercomputer, housed at the U of I National Center for Supercomputing Applications (NCSA), in their research. Their paper was published in Earth System Science Data in February 2021.

"Quantifying the rate at which plants in a given area process CO2 is critical to a global understanding of carbon cycling, terrestrial land management, and water and soil health - especially given the erratic conditions of a warming planet," said Kaiyu Guan, project leader and NCSA Blue Waters Professor.

"Measuring photosynthesis is especially pertinent to agricultural ecosystems, where plant productivity and biomass levels are directly tied to crop yield and therefore food security. Our research directly applies to not only ecosystem service, but also societal well-being," said Chongya Jiang, a research scientist on the project.

Of particular intrigue is the relevance of GPP monitoring to bioenergy agricultural ecosystems, where the crops' "factories" are specially designed to produce renewable biofuels. Quantifying CO2 fixation in these environments is instrumental to optimizing field performance and contributing to the global bioeconomy. CABBI scientists, such as Sustainability Theme researcher Andy VanLoocke, suggest that this critical new data can be used to constrain model simulations for bioenergy crop yield potentials.

The technology used in this experiment is cutting-edge. As its name suggests, it is purely derived from satellite data, and therefore completely observation-based as opposed to relying on complex, uncertain modeling methods.

One example of an observation-based technology is solar-induced chlorophyll fluorescence (SIF), a weak light signal emitted by plants that has been used as a novel proxy for GPP. Inspired by their years-long ground observations of SIF, Guan's group developed an even more advanced method to improve GPP estimation: integrating a new vegetation index called "soil-adjusted near-infrared reflectance of vegetation" (SANIRv) with photosynthetically active radiation (PAR).

SLOPE is built on this novel integration. SANIRv represents the efficiency of solar radiation used by vegetation, and PAR represents the solar radiation that plants can actually use for photosynthesis. Both metrics are derived from satellite observations.

Through an analysis of 49 AmeriFlux sites, researchers found that PAR and SANIRv can be leveraged to accurately estimate GPP. In fact, the SLOPE GPP product can explain 85% of spatial and temporal variations in GPP acquired from the analyzed sites - a successful result, and the best performance ever achieved benchmarked on this gold-standard data. As both SANIRv and PAR are "satellite only," this is an achievement that researchers have long been seeking but is just now being implemented in an operational GPP product.

Existing processes to quantify GPP are inefficient for three key reasons: spatial (image-based) precision, temporal (time-based) precision, and latency (delay in data availability). The SLOPE GPP product created by Guan's team uses satellite images twice as sharp as most large-scale studies (measuring at 250 meters versus the typical >500 meters) and retrieves data on a daily cycle, eight times finer than the norm.

More importantly, this new product has between one and three days latency, whereas existing datasets lag behind by months or even years. Finally, the majority of GPP products employed today are analysis- rather than observation-based - the metrics they use to calculate GPP (e.g., soil moisture, temperature, etc.) are derived from algorithms rather than real-world conditions gleaned from satellite observations.

"Photosynthesis, or GPP, is the foundation for quantifying the field-level carbon budget. Without accurate GPP information, quantifying other carbon-related variables, such as annual soil carbon change, is much less reliable," Guan said.

"The Blue Waters supercomputer made our peta-bytes computing possible. We will use this novel GPP data to significantly advance our ability to quantify agricultural carbon budget accounting, and it will serve as a primary input to constrain the modeling of soil organic carbon change for every field that requires soil carbon quantification. In addition to the SLOPE GPP data, similar methods allow us to generate GPP data at 10-meter and daily resolution to even enable sub-field precision agricultural management."

Research paper


Related Links
University Of Illinois At Urbana-Champaign Institute For Sustainability, Energy, And Environment
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
NOAA selects Woolpert to collect Topo-Bathy Lidar, imagery over Hawaiian islands
Kaua'i HI (SPX) Feb 15, 2021
Woolpert has been awarded a task order under the National Oceanic and Atmospheric Administration's Shoreline Mapping Services Contract to provide topographic and bathymetric lidar data and imagery for islands in the Northwest Hawaiian Islands chain, mostly within the Papahanaumokuakea Marine National Monument. This contract is administered by NOAA's National Geodetic Survey Remote Sensing Division and will support several mission areas within NOAA. Under this task order, Woolpert will deploy its K ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Astronauts of India's first human spaceflight will be treated to Indian cuisine

NASA weighs options for additional Soyuz Mission to ISS

Best way to get around the Solar System

Calnetix Technologies Supplies Key Components for NASA's Next-Generation CO2 Removal System

EARTH OBSERVATION
UK government publishes environmental guidance for spaceflight

Space Nuclear Propulsion Technologies central to future of Mars Exploration

SpaceX calls off Starlink launch due to 'unfavorable weather'

Ozmens' SNC Dream Chaser spaceplane closer to commercial runway landing

EARTH OBSERVATION
ExoMars discovers new gas and traces water loss on Mars

Scientists detect water vapour emanating from Mars

As new probes reach Mars, here's what we know so far from trips to the red planet

China's Tianwen-1 probe enters Mars orbit: state media

EARTH OBSERVATION
Three generations dedicated to space program

China's space station core module, cargo craft pass factory review

China's space tracking ship completes satellite launch monitoring

Key modules for China's next space station ready for launch

EARTH OBSERVATION
SpaceX plans to boost Starlink network with launch

Thales Alenia Space wins $3.0 bn Canadian contract

Mikhail Kokorich resigns his CEO position in Momentus Space

DARPA pursues plan for robust manufacturing in space

EARTH OBSERVATION
Russian cosmonauts to test new shielding material for radiation protection

ESA and UNOOSA illustrate space debris problem

Isotropic Systems to accelerate commercial readiness of multi-beam antenna

Existential threat to the space economy in 2021

EARTH OBSERVATION
Pollution could be one way to find an extraterrestrial civilization

Super-Earth atmospheres probed at Sandia's Z machine

RUAG Space provides Solar Subsystem for planet hunter PLATO

Can super-Earth interior dynamics set the table for habitability

EARTH OBSERVATION
Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.