. 24/7 Space News .
TECH SPACE
Measuring atoms for better navigation and mineral detection
by Staff Writers
Brisbane, Australia (SPX) Nov 10, 2017


Lasers can trap and cool a gas of atoms can be used to make an ultra-precise measurement device called an atom interferometer.

Better navigation systems and tracking of minerals and water may be the result of a new discovery by physicists studying atom measurement devices.

University of Queensland PhD candidate Mr Samuel Nolan said the study investigated how to reduce errors in atom interferometers, devices that provide incredibly precise measurements of different physical quantities such as time, electric and magnetic fields, accelerations and rotations.

"Atom interferometers are used in the mining industry to detect what's beneath the ground; at sea to improve navigation; and to track movement of water across the planet," Mr Nolan said.

Mr Nolan worked with Dr Stuart Szigeti, ARC Centre for Excellence for Engineered Quantum Systems, The University of Queensland, and Dr Simon Haine, University of Sussex, to devise a way to decrease errors in atom measurement devices.

The technique provides greater flexibility in designing these quantum sensors and allows the devices to operate with unprecedented levels of precision.

"The measurement precision of atom interferometers can be boosted by exploiting a weird property of quantum waves called 'quantum entanglement' but so far they can't compete with more conventional precision sensors," he said.

Quantum entanglement is a phenomenon which Einstein famously called "spooky action at a distance".

"The proposed new technique allows atoms to be counted in a way that is very robust against detection noise, a problem with current devices, and could help to move experimental physics out of the laboratory and into the real world," Mr Nolan said.

The study, Optimal and Robust Quantum Metrology Using Interaction-Based Readouts, is published in Physical Review Letters (doi: 10.1103/PhysRevLett.119.193601).

TECH SPACE
Synthetic material acts like an insect cloaking device
University Park PA (SPX) Nov 06, 2017
Synthetic microspheres with nanoscale holes can absorb light from all directions across a wide range of frequencies, making them a candidate for antireflective coatings, according to a team of Penn State engineers. The synthetic spheres also explain how the leaf hopper insect uses similar particles to hide from predators in its environment. Scientists have long been aware that leaf hoppers ... read more

Related Links
University of Queensland
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Orbital ATK's to deliver supplies to International Space Station

How Does Your Space Garden Grow

NanoRacks Deploys Second Kaber-Class Microsatellite This Week, First On-Orbit Assembly

Saudi Arabia to invest $1 billion in Virgin Galactic

TECH SPACE
Russia embezzlement probe at rocket firm Soyuz

Alaska Aerospace Launches Aurora Launch Services Company

Launch your design with Cheops

NASA Selects Studies for Gateway Power and Propulsion Element

TECH SPACE
Insight will carry over two million names to Mars

Opportunity Does a Wheelie and is Back on Solid Footing

Martian Ridge Brings Out Rover's Color Talents

Next Mars Rover Will Have 23 'Eyes'

TECH SPACE
China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

TECH SPACE
European Space Week starts in Estonia

New Chinese sat comms company awaits approval

Myanmar to launch own satellite system-2 in 2019: vice president

Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

TECH SPACE
Tech increases microfluidic research data output 100-fold

One-step 3-D printing of catalysts developed at Ames Laboratory

How to store information in your clothes invisibly, without electronics

Synthetic material acts like an insect cloaking device

TECH SPACE
18-Month Twinkle in a Forming Star Suggests a Very Young Planet

Overlooked Treasure: The First Evidence of Exoplanets

Atmospheric beacons guide NASA scientists in search for life

Scientists discover new type of deep-sea hunting called kleptopredation

TECH SPACE
Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

Juno Aces 8th Science Pass of Jupiter, Names New Project Manager

Jupiter's X-ray auroras pulse independently









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.