. 24/7 Space News .
ENERGY TECH
Massive underground instrument finds final secret of our sun's fusion
by Staff Writers
Princeton NJ (SPX) Dec 15, 2020

file illustration only

A hyper-sensitive instrument, deep underground in Italy, has finally succeeded at the nearly impossible task of detecting CNO neutrinos (tiny particles pointing to the presence of carbon, nitrogen and oxygen) from our sun's core. These little-known particles reveal the last missing detail of the fusion cycle powering our sun and other stars.

In results published Nov. 26 in the journal Nature (and featured on the cover), investigators of the Borexino collaboration report the first detections of this rare type of neutrinos, called "ghost particles" because they pass through most matter without leaving a trace.

The neutrinos were detected by the Borexino detector, an enormous underground experiment in central Italy. The multinational project is supported in the United States by the National Science Foundation under a shared grant overseen by Frank Calaprice, professor of physics emeritus at Princeton; Andrea Pocar, a 2003 graduate alumna of Princeton and professor of physics at the University of Massachusetts-Amherst; and Bruce Vogelaar, professor of physics at the Virginia Polytechnical Institute and State University (Virginia Tech).

The "ghost particle" detection confirms predictions from the 1930s that some of our sun's energy is generated by a chain of reactions involving carbon, nitrogen and oxygen (CNO). This reaction produces less than 1% of the sun's energy, but it is thought to be the primary energy source in larger stars.

This process releases two neutrinos - the lightest known elementary particles of matter - as well as other subatomic particles and energy. The more abundant process for hydrogen-to-helium fusion also releases neutrinos, but their spectral signatures are different, allowing scientists to distinguish between them.

"Confirmation of CNO burning in our sun, where it operates at only a 1% level, reinforces our confidence that we understand how stars work," said Calaprice, one of the originators of and principal investigators for Borexino.

CNO neutrinos: Windows into the sun
For much of their life, stars get energy by fusing hydrogen into helium. In stars like our sun, this predominantly happens through proton-proton chains. However, in heavier and hotter stars, carbon and nitrogen catalyze hydrogen burning and release CNO neutrinos. Finding any neutrinos helps us peer into the workings deep inside the sun's interior; when the Borexino detector discovered proton-proton neutrinos, the news lit up the scientific world.

But CNO neutrinos not only confirm that the CNO process is at work within the sun, they can also help resolve an important open question in stellar physics: how much of the sun's interior is made up of "metals," which astrophysicists define as any elements heavier than hydrogen or helium, and whether the "metallicity" of the core matches that of the sun's surface or outer layers.

Unfortunately, neutrinos are exceedingly difficult to measure. More than 400 billion of them hit every square inch of the Earth's surface every second, yet virtually all of these "ghost particles" pass through the entire planet without interacting with anything, forcing scientists to utilize very large and very carefully protected instruments to detect them.

The Borexino detector lies half a mile beneath the Apennine Mountains in central Italy, at the Laboratori Nazionali del Gran Sasso (LNGS) of Italy's National Institute for Nuclear Physics, where a giant nylon balloon - some 30 feet across - filled with 300 tons of ultra-pure liquid hydrocarbons is held in a multi-layer spherical chamber that is immersed in water.

A tiny fraction of the neutrinos that pass through the planet will bounce off electrons in these hydrocarbons, producing flashes of light that can be detected by photon sensors lining the water tank. The great depth, size and purity makes Borexino a truly unique detector for this type of science.

The Borexino project was initiated in the early 1990s by a group of physicists led by Calaprice, Gianpaolo Bellini at the University of Milan, and the late Raju Raghavan (then at Bell Labs). Over the past 30 years, researchers around the world have contributed to finding the proton-proton chain of neutrinos and, about five years ago, the team started the hunt for the CNO neutrinos.

Suppressing the background
"The past 30 years have been about suppressing the radioactive background," Calaprice said.

Most of the neutrinos detected by Borexino are proton-proton neutrinos, but a few are recognizably CNO neutrinos. Unfortunately, CNO neutrinos resemble particles produced by the radioactive decay of polonium-210, an isotope leaking from the gigantic nylon balloon. Separating the sun's neutrinos from the polonium contamination required a painstaking effort, led by Princeton scientists, that began in 2014.

Since the radiation couldn't be prevented from leaking out of the balloon, the scientists found another solution: ignore signals from the contaminated outer edge of the sphere and protect the deep interior of the balloon. That required them to dramatically slow the rate of fluid movement within the balloon.

Most fluid flow is driven by heat differences, so the U.S. team worked to achieve a very stable temperature profile for the tank and hydrocarbons, to make the fluid as still as possible. The temperature was precisely mapped by an array of temperature probes installed by the Virginia Tech group, led by Vogelaar.

"If this motion could be reduced enough, we could then observe the expected five or so low-energy recoils per day that are due to CNO neutrinos," Calaprice said. "For reference, a cubic foot of 'fresh air' - which is a thousand times less dense than the hydrocarbon fluid - experiences about 100,000 radioactive decays per day, mostly from radon gas."

To ensure stillness within the fluid, Princeton and Virginia Tech scientists and engineers developed hardware to insulate the detector - essentially a giant blanket to wrap around it - in 2014 and 2015, then they added three heating circuits that maintain a perfectly stable temperature.

Those succeeded in controlling the temperature of the detector, but seasonal temperature changes in Hall C, where Borexino is located, still caused tiny fluid currents to persist, obscuring the CNO signal.

So two Princeton engineers, Antonio Di Ludovico and Lidio Pietrofaccia, worked with LNGS staff engineer Graziano Panella to create a special air handling system that maintains a stable air temperature in Hall C. The Active Temperature Control System (ATCS), developed at the end of 2019, finally produced enough thermal stability outside and inside the balloon to quiet the currents inside the detector, finally keeping the contaminating isotopes from being carried from the balloon walls into the detector's core.

The effort paid off.
"The elimination of this radioactive background created a low background region of Borexino that made the measurement of CNO neutrinos possible," Calaprice said.

"The data is getting better and better"

Before the CNO neutrino discovery, the lab had planned to end Borexino operations at the close of 2020. Now, it appears that data gathering could extend into 2021.

The volume of still hydrocarbons at the heart of the Borexino detector has continued to grow in size since February 2020, when the data for the Nature paper was collected. That means that, beyond revealing the CNO neutrinos that are the subject of this week's Nature article, there is now a potential to help resolve the "metallicity" problem as well - the question of whether the core, outer layers and surface of the sun all have the same concentration of elements heavier than helium or hydrogen.

"We have continued collecting data, as the central purity has continued to improve, making a new result focused on the metallicity a real possibility," Calaprice said. "Not only are we still collecting data, but the data is getting better and better."

Research paper


Related Links
Princeton University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
China turns on nuclear-powered 'artificial sun'
Beijing (AFP) Dec 4, 2020
China successfully powered up its "artificial sun" nuclear fusion reactor for the first time, state media reported Friday, marking a great advance in the country's nuclear power research capabilities. The HL-2M Tokamak reactor is China's largest and most advanced nuclear fusion experimental research device, and scientists hope that the device can potentially unlock a powerful clean energy source. It uses a powerful magnetic field to fuse hot plasma and can reach temperatures of over 150 million ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Fertilizer made from urine could enable space agriculture

Spinoff highlights NASA technology paying dividends in US economy

Hibernating lemurs may be the key to cryogenic sleep for human space travel

NASA and Boeing target new launch date for next Starliner flight test

ENERGY TECH
SpaceX launches satellite for SiriusXM from Florida

Haiyang helps assemble Long March 11 carrier rocket

Elon Musk's SpaceX in funding talks as it seeks to double valuation to $92B

NASA, ESA Choose Astronauts for SpaceX Crew-3 Mission to Space Station

ENERGY TECH
From NASA JPL's Mailroom to Mars and Beyond

Powerful electrical events quickly alter surface chemistry on Mars

Ice-Rich flow features in Martian southern hemisphere reveal effects of recent climate cycles

China's Mars probe 100m km from Earth

ENERGY TECH
China plans to launch new space science satellites

How it took decades for space program to take off

China to Begin Construction of Its Space Station Next Year

Moon mission tasked with number of firsts for China

ENERGY TECH
Arianespace to launch next OneWeb batch from Vostochny Cosmodrome

Governments maintain firm financial commitment to space during 2020

NASA awards prizes to six startup companies in Entrepreneur's Challenge

Turksat 5A satellite to 'secure' Turkey's orbital rights

ENERGY TECH
MIT to use the ISS to test smart, electronic textiles for use in spacesuits and spacecraft

Unibap becomes a member of AWS Partner Network for SpaceCloud

NASA releases best practices handbook to help improve space safety

Microchip adds COTS 64Mbit flash memory device to its radiation-tolerant lineup

ENERGY TECH
Scientists discover compounds that could have helped to start life on Earth

Hubble identifies strange exoplanet that behaves like a "Planet Nine"

Device mimics life's first steps in outer space

Research identifies Earth's extreme environments as best places for life to grow

ENERGY TECH
Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery

Swedish space instrument participates in the search for life around Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.