. 24/7 Space News .
SOLAR SCIENCE
Making Waves on the Sun
by Susanna Kohler for AAS Nova
Washington DC (SPX) Nov 19, 2020

Rossby waves modeled as on the Sun.

Sinuous, undulating waves in the Earth's atmosphere play a large role in driving the weather patterns on our planet. A new study now describes how similar motion can govern the behavior of the Sun - and what we stand to learn from it.

When you plan a sunny picnic outing for the weekend, you can thank Carl-Gustav Rossby for his role in enabling the weather forecasts you're now able to check. In 1939, Rossby first identified large-scale waves in the Earth's atmosphere. These slow meanders of high-altitude winds are visible as long, persistent undulations in the jet stream that carry cells of warmer or cooler air to different regions of the planet.

Through this transport, Rossby waves are critical in driving the day-to-day weather patterns that we experience at middle and higher latitudes on our planet's surface. Our understanding of the hydrodynamics of Rossby waves is, consequently, one of the things that enables us to make (approximate) weather predictions on timescales of roughly 14 days.

Waves Far and Wide
But Rossby waves aren't specific to Earth's atmosphere; they can arise naturally within any fluids that exhibit differential rotation. Scientists have studied some cases of Rossby waves in detail - like those in the Earth's oceans, or in Jupiter's atmosphere. But less is known about the role of Rossby waves on an even larger rotating body: the Sun.

Are the motions of the Sun's atmosphere governed by these same waves? And if so, can we figure out how to model them similarly to how we model Rossby waves on Earth, thereby unlocking a key to making solar weather predictions on 14-rotation (that's around a year, given the Sun's rotation period!) timescales?

But What About Magnetic Fields?
The answer to the first question is yes: signs of Rossby waves have already been observed on the Sun, in the form of persistent, global velocity patterns that evolve on timescales longer than a solar rotation period, but shorter than a solar cycle.

The answer to the second question, however, is less clear. Why? Because there's a complicating factor: unlike Earth's lower atmosphere, the Sun is strongly magnetized. A new study led by Mausumi Dikpati (National Center for Atmospheric Research) now walks us through the basic physics involved in Rossby wave development in the Sun, and discusses how the Sun's magnetic fields influence those waves.

Sketching a Wavy Picture
Using a simple model, Dikpati and collaborators show that different waves form in the hydrodrynamic and magnetohydrodynamic cases. When magnetic fields are present, two different classes of waves develop that propagate in opposite directions relative to the mean atmospheric flow. The authors also demonstrate what we should expect for fluid particle trajectories within these waves - which is important for understanding observations.

The basic physics described here is a first step that now needs to be expanded to include more complex interactions. But this starting point demonstrates that Rossby waves likely play an important role in organizing the motions of the Sun's atmosphere. And once we've developed more detailed models of this process, perhaps we'll be able to check our phones for the solar weather forecast for the year!

Check out this wildly awesome NASA-produced simulation showing the development of Rossby waves in the Earth's northern jet stream.

Research Report: "Physics of Magnetohydrodynamic Rossby Waves in the Sun"


Related Links
American Astronomical Society
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
Ripples in the pond of magnetic field reconnection
Taoyuan City, Taiwan (SPX) Nov 05, 2020
The majority of the visible matter in the Universe consist of charged particles or plasmas which may develop the magnetic field reconnection (MR) at the places where the magnetic field direction exhibits abrupt change. Through the MR the magnetic field energy may effectively be transferred into the kinetic and thermal energies of plasmas, resulting in many explosive plasma phenomena occurring on the Sun, planetary and pulsar magnetospheres, even the blackhole, etc. The interface or magnetopa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Marshall team enables increased science return from International Space Station astronauts

A new doorway to space

ISS crew successfully patched hull crack Roscosmos confirms

Resolving mysteries about the first stellar parallaxes and distances

SOLAR SCIENCE
Skyrora conducts vacuum chamber engine tests to replicate space-like conditions

NASA and SpaceX "Go" for Dec. 5 Cargo Resupply Launch

NASA's 'super cool' engineers rehearse rocket fueling for Artemis I

Relativity Space closes $500M Series D financing for 3D rockets

SOLAR SCIENCE
Hear audio from Perseverance as it travels through deep space

Field geology at Mars' equator points to ancient megaflood

ExoMars parachute testing moves forward

Ancient zircon minerals from Mars reveal the elusive internal structure of the red planet

SOLAR SCIENCE
China's space tracking ship sails for Chang'e 5 mission

China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

SOLAR SCIENCE
Major funding package pledged for UK Space Centre of Excellence in Ayrshire, Scotland

UK government secures satellite network OneWeb

Ten satellites to be built in Glasgow in next three years

SpaceX's Starlink satellites are about to ruin stargazing for everyone

SOLAR SCIENCE
The "Workspace Of The Future," Carnegie's VizLab Will Unlock The Secrets Of The Universe

Astroscale announces March 2021 Launch Date for Debris Removal Demonstration

China launches antenna array for Mars, moon missions

MDA receives commercial contracts for on-orbit servicing technologies

SOLAR SCIENCE
Here's Looking at You, MKID

New Interdisciplinary Consortium for Astrobiology Research

Building blocks of life can form long before stars

Life's building blocks can form in interstellar clouds without stellar fusion

SOLAR SCIENCE
Swedish space instrument participates in the search for life around Jupiter

Researchers model source of eruption on Jupiter's moon Europa

Radiation Does a Bright Number on Jupiter's Moon

New plans afoot beyond Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.