. 24/7 Space News .
ROBO SPACE
Magnets could offer better control of prosthetic limbs
by Anne Trafton for MIT News
Boston MA (SPX) Aug 19, 2021

Researchers at MIT's Media Lab have developed a new strategy that could offer much more precise control of prosthetic limbs.

For people with amputation who have prosthetic limbs, one of the greatest challenges is controlling the prosthesis so that it moves the same way a natural limb would. Most prosthetic limbs are controlled using electromyography, a way of recording electrical activity from the muscles, but this approach provides only limited control of the prosthesis.

Researchers at MIT's Media Lab have now developed an alternative approach that they believe could offer much more precise control of prosthetic limbs. After inserting small magnetic beads into muscle tissue within the amputated residuum, they can precisely measure the length of a muscle as it contracts, and this feedback can be relayed to a bionic prosthesis within milliseconds.

In a new study appearing in Science Robotics, the researchers tested their new strategy, called magnetomicrometry (MM), and showed that it can provide fast and accurate muscle measurements in animals. They hope to test the approach in people with amputation within the next few years.

"Our hope is that MM will replace electromyography as the dominant way to link the peripheral nervous system to bionic limbs. And we have that hope because of the high signal quality that we get from MM, and the fact that it's minimally invasive and has a low regulatory hurdle and cost," says Hugh Herr, a professor of media arts and sciences, head of the Biomechatronics group in the Media Lab, and the senior author of the paper.

Cameron Taylor, an MIT postdoc, is the lead author of the study. Other authors include MIT postdoc Shriya Srinivasan, MIT graduate student Seong Ho Yeon, Brown University professor of ecology and evolutionary biology Thomas Roberts, and Brown postdoc Mary Kate O'Donnell.

Precise measurements
With existing prosthetic devices, electrical measurements of a person's muscles are obtained using electrodes that can be either attached to the surface of the skin or surgically implanted in the muscle. The latter procedure is highly invasive and costly, but provides somewhat more accurate measurements. However, in either case, electromyography (EMG) offers information only about muscles' electrical activity, not their length or speed.

"When you use control based on EMG, you're looking at an intermediate signal. You're seeing what the brain is telling the muscle to do, but not what the muscle is actually doing," Taylor says.

The new MIT strategy is based on the idea that if sensors could measure what muscles are doing, those measurements would offer more precise control of a prosthesis. To achieve, that, the researchers decided to insert pairs of magnets into muscles. By measuring how the magnets move relative to one another, the researchers can calculate how much the muscles are contracting and the speed of contraction.

Two years ago, Herr and Taylor developed an algorithm that greatly reduced the amount of time needed for sensors to determine the positions of small magnets embedded in the body. This helped them to overcome one of the major hurdles to using MM to control prostheses, which was the long lag-time for such measurements.

In the new Science Robotics paper, the researchers tested their algorithm's ability to track magnets inserted in the calf muscles of turkeys. The magnetic beads they used were 3 millimeters in diameter and were inserted at least 3 centimeters apart - if they are closer than that, the magnets tend to migrate toward each other.

Using an array of magnetic sensors placed on the outside of the legs, the researchers found that they were able to determine the position of the magnets with a precision of 37 microns (about the width of a human hair), as they moved the turkeys' ankle joints. These measurements could be obtained within three milliseconds.

For control of a prosthetic limb, these measurements could be fed into a computer model that predicts where the patient's phantom limb would be in space, based on the contractions of the remaining muscle. This strategy would direct the prosthetic device to move the way that the patient wants it to, matching the mental picture that they have of their limb position.

"With magnetomicrometry, we're directly measuring the length and speed of the muscle," Herr says. "Through mathematical modeling of the entire limb, we can compute target positions and speeds of the prosthetic joints to be controlled, and then a simple robotic controller can control those joints."

Muscle control
Within the next few years, the researchers hope to do a small study in human patients who have amputations below the knee. They envision that the sensors used to control the prosthetic limbs could be placed on clothing, attached to the surface of the skin, or affixed to the outside of a prosthesis.

MM could also be used to improve the muscle control achieved with a technique called functional electrical stimulation, which is now used to help restore mobility in people with spinal cord injuries. Another possible use for this kind of magnetic control would be to guide robotic exoskeletons, which can be attached to an ankle or another joint to help people who have suffered a stroke or developed other kinds of muscle weakness.

"Essentially the magnets and the exoskeleton act as an artificial muscle that will amplify the output of the biological muscles in the stroke-impaired limb," Herr says. "It's like the power steering that's used in automobiles."

Another advantage of the MM approach is that it is minimally invasive. Once inserted in the muscle, the beads could remain in place for a lifetime without needing to be replaced, Herr says.


Related Links
MIT Media Lab
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROBO SPACE
Inflatable robotic hand gives amputees real-time tactile control
Boston MA (SPX) Aug 17, 2021
For the more than 5 million people in the world who have undergone an upper-limb amputation, prosthetics have come a long way. Beyond traditional mannequin-like appendages, there is a growing number of commercial neuroprosthetics - highly articulated bionic limbs, engineered to sense a user's residual muscle signals and robotically mimic their intended motions. But this high-tech dexterity comes at a price. Neuroprosthetics can cost tens of thousands of dollars and are built around metal skeletons ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
NASA seeks student tech ideas for suborbital launch

Samsung announces $205 billion investment plan

Northrop Grumman set to launch 16th cargo delivery mission to ISS

NASA, Boeing to Move Starliner to Production Facility for Propulsion System Evaluation

ROBO SPACE
Musk says next Moon landing will probably be sooner than in 2024

Boeing to remove Starliner from rocket, months-long delay expected

Boeing Starliner launch faces further delays

Hermeus fully-funded to flight with US Air Force Partnership

ROBO SPACE
NASA's Ingenuity helicopter completes 12th Mars flight

Trio of orbiters shows small dust storms help dry out Mars

Aviation Week awards NASA's Ingenuity Mars Helicopter with laureate

Is Curiosity exploring surface sediments or lake deposits

ROBO SPACE
Chinese astronauts to conduct extravehicular activities for second time

Mars mission outcomes to advance space research

Chinese rocket for Tianzhou-3 mission arrives at launch site

Tianhe astronauts use free time to watch ping-pong and exercise

ROBO SPACE
Microsoft unveils Australian Space Startup launchpad

Phantom Space acquires Micro Aerospace Solutions

Business growth scheme open to next group of space entrepreneurs

BlackSky to expand constellation with three back-to-back missions

ROBO SPACE
Facebook unveils virtual reality 'workrooms'

A technique to predict radiation risk during ISS Missions

DRCongo to review China Moly copper-cobalt mine deal

Department of Energy invests in novel research in high-performance algorithms

ROBO SPACE
Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

Small force, big effect: How the planets could influence the sun

Astronomers find evidence of possible life-sustaining planet

ROBO SPACE
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.