![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Columbia MD (SPX) Jun 03, 2020
The area around the supermassive black hole at the center of our Milky Way galaxy is dominated by gravity, but it's not the only force at play. According to new research from NASA's airborne telescope, the Stratospheric Observatory for Infrared Astronomy, or SOFIA, magnetic fields may be strong enough to control material moving around the black hole. The research, presented this week at a meeting of the American Astronomical Society (https://aas.org/meetings/aas236), could help answer longstanding mysteries about why our black hole is relatively quiet compared to others, and why the formation of new stars in our galaxy's core is lower than expected. Using its newest infrared instrument to study celestial dust grains, which align perpendicular to magnetic field lines, SOFIA was able to produce detailed maps of our galactic center, showing the behavior of these otherwise invisible magnetic fields around the black hole. "There are still aspects of our galaxy's black hole that we can't explain with gravity alone," said Joan Schmelz, SOFIA senior science advisor and director at the Universities Space Research Association, in Columbia Maryland. "Magnetic fields may be able to help solve these mysteries." Scientists have often relied on gravity to explain their results because measuring celestial magnetic fields is extremely challenging. But the data from SOFIA now compel scientists to consider their role. Magnetic fields control the plasma of the solar atmosphere, called the corona, because the pressure created by magnetic fields is greater than the pressure created by heat, or thermal pressure. In the Sun's corona, the dominance of magnetic pressure creates dramatic loops and powerful flares. The research team is using SOFIA's data to study the pressure created by magnetic fields at the center of our galaxy. They found that the magnetic pressure is greater than the thermal pressure created by gas in the region, and therefore may be strong enough to control matter in a way that's similar to the solar corona. More research is needed to understand magnetic fields' role at the center of our galaxy and how these strong forces fit in with gravity. However, there preliminary results can enhance our understanding of at least two long-standing, fundamental questions about star formation and black hole activity in our galactic center region. Even though there's plenty of raw material to form stars, the star formation rate is significantly lower than expected. Additionally, our black hole is relatively quiet compared to those at the centers of many other galaxies. The strong magnetic field could explain both - it could keep the black hole from swallowing the matter it needs to form jets and also suppress the birth of stars. Studying magnetic fields in the far reaches of the galaxy and beyond requires remote observations by telescopes like SOFIA. Flying at an altitude of 45,000 feet, above 99% of the Earth's water vapor, SOFIA is able to capture a unique view of the infrared universe, while landing after each flight so that it can be upgraded with the latest technology. For this result, SOFIA used the High-resolution Airborne Wideband Camera-Plus, or HAWC+ instrument, which was built at NASA's Jet Propulsion Laboratory in Pasadena, California, to study magnetic fields. "The data provide the most detailed look yet at the magnetic fields surrounding our galaxy's central black hole," said David Chuss, a coauthor of the paper at Villanova University in Pennsylvania. "The HAWC+ instrument has improved the resolution by a factor of 10 and increased the sensitivity, which represent a revolutionary step forward."
![]() ![]() ALMA Spots Twinkling Heart of Milky Way Tokyo, Japan (SPX) May 25, 2020 Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) found quasi-periodic flickers in millimeter-waves from the center of the Milky Way, Sagittarius (Sgr) A*. The team interpreted these blinks to be due to the rotation of radio spots circling the supermassive black hole with an orbit radius smaller than that of Mercury. This is an interesting clue to investigate space-time with extreme gravity. "It has been known that Sgr A* sometimes flares up in millimeter wavelength," tells ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |