. 24/7 Space News .
STELLAR CHEMISTRY
MSU-based specialists in mechanics investigated the behavior of vacuum oil in space
by Staff Writers
Moscow, Russia (SPX) May 07, 2018

A scheme of a flow.

A research team from the Research Institute of Mechanics, MSU together with a colleague from the Center of New Space Technologies, MAI described the behavior of a liquid sheet propagating in open space. The results of the study were published in the Physics of Fluids journal.

Under standard conditions, the stability of liquid sheets generally depends on their interaction with the air. The predominant effect (the so-called Kelvin-Helmholtz instability) is manifested due to the liquid-air friction. The difference in the velocities of the gas and the liquid results in the onset of ripples, waves, and the formation of droplets near the liquid surface.

Wind-generated waves on the surfaces of water are probably one of the best-known examples of this instability. The authors of the article studied theoretically the behavior of a liquid sheet in vacuum, when no interaction with the environment occurs.

In the study, the authors considered the so-called vacuum oil, i.e. a liquid whose viscosity, thermal conductivity, and surface tension coefficients vary substantially with temperature (such liquids are used, among others, in oil-vapor pumps).

Studying the liquid-sheet behavior in open space is relevant to the development of new spacecraft cooling technologies. In the future, the so-called droplet cooling radiators may be used to control the thermal regime of long-mission spacecrafts. In these devices the liquid of the cooling system is fragmented by special atomizers and turns into a layer of liquid droplets moving in the open space. Since the layer of droplets has a large radiating surface, the heat is more efficiently released and the liquid is cooled more intensively.

At the same time, a serious problem arises, as these drops have to be collected, liquefied, and returned back onboard the spacecraft. One of possible solutions of this problem is to collect the cooled drops onto a specially organized liquid sheet. The main issue of the paper is to study the hydrodynamic stability of such a sheet in the open space conditions.

"Liquid films and sheets tend to be broken into droplets due to the Kelvin-Helmholtz instability, associated with friction between air and liquid. However, this disability is eliminated in open space; accordingly, we need to study other possible mechanisms of instability and reasons for liquid fragmentation. We found out what other types of instabilities may occur in liquid sheets when they propagate in vacuum, but their flow is considerably non-isothermal due to heat radiation from the sheet surface," - explained Professor Alexander Osiptsov, a co-author of the work and the Head of Laboratory for Mechanics of Multiphase Media, Research Institute of Mechanics, MSU.

Using the classical approaches of hydrodynamic-stability theory, the researchers gave a mathematical explanation of the behavior exhibited by a vacuum-oil sheet in the open space. It turned out that in the absence of the main (Kelvin-Helmholtz) instability mechanism other instabilities may develop, namely those associated with viscosity and surface tension gradients.

Due to the heat radiation from the sheet surface, temperature differences arise both along the surface of the sheet and inside it. In turn, these temperature gradients cause nonuniformities in the viscosity and surface tension and the onset of new instability mechanisms.

The scientists described the occurrence of instabilities in a flow of liquid from the mathematical point of view, studied the development of short- and long-wave disturbances with time, and determined the most 'dangerous' of them. In their further work, the scientists plan to continue the development of the theoretical model and to describe more complicated processes that may occur in the system.

"By now we've studied only the initial stage, i.e. the behavior of small disturbances. We've determined the conditions when the disturbances are damped or grow and established the instability criteria. In the future, we'll have to deal with more complicated problems: to study the development of disturbances in the non-linear stage, to estimate the time intervals over which areas of nonuniform thickness of the sheet or even holes in it are formed, and to find the rate of sheet's fragmentation into droplets. And that is most important, we have to learn how to control the process and stabilize the sheet flow regime in open space," - added A. Osiptsov.

Research paper


Related Links
Lomonosov Moscow State University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
NGC 6231: Stellar Family Portrait in X-rays
Boston MA (SPX) May 03, 2018
In some ways, star clusters are like giant families with thousands of stellar siblings. These stars come from the same origins - a common cloud of gas and dust - and are bound to one another by gravity. Astronomers think that our Sun was born in a star cluster about 4.6 billion years ago that quickly dispersed. By studying young star clusters, astronomers hope to learn more about how stars - including our Sun - are born. NGC 6231, located about 5,200 light years from Earth, is an ideal testbed for ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Russia Offers Space Tourist Flight to US, European Astronauts, UAE Citizen

Jim Bridenstine brings understanding of commercial technology to his new role as NASA Admin

Tourism nearly a tenth of global CO2 emissions

Why plants are so sensitive to gravity: The lowdown

STELLAR CHEMISTRY
TDM Bridge Builder: Daniel Herman, Solar Electric Propulsion System Lead

SpaceX's Dragon cargo ship returns to Earth

Reduce, Reuse, Rockets?

Return of SpaceX cargo ship delayed by rough seas

STELLAR CHEMISTRY
Mars growth stunted by early giant planetary instability

InSight probe to survey Mars for secrets inside the planet

NASA's newest Mars lander to study quakes on Red Planet

NASA blasts off Mars-bound spaceship, InSight, to study quakes

STELLAR CHEMISTRY
China to Use Soviet Engine to Power Its First Reusable Space Rocket

Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

STELLAR CHEMISTRY
In crowded field, Iraq election hopefuls vie to stand out

ESA selects three new mission concepts for study

Australian Space Agency Lost In Canberra

China's communication satellites occupy niche in world market

STELLAR CHEMISTRY
Lasers in Space: Earth Mission Tests New Technology

China rejects US military claims of laser attacks on pilots

AF plans to accelerate defendable space with Next-Gen OPIR

Can this invasive exotic pest make better materials for industry and medicine?

STELLAR CHEMISTRY
An Exoplanet Atmosphere Free of Clouds

Dutch astronomers photograph possible toddler planet by chance

The Cheops ccience instrument arrives in Madrid

Hubble detects helium in the atmosphere of an exoplanet for the first time

STELLAR CHEMISTRY
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.