![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Ruston LA (SPX) Oct 24, 2016
Dr. Kasra Momeni, assistant professor of mechanical engineering and director of the Advanced Hierarchical Materials by Design Lab at Louisiana Tech University, has discovered a new mechanism for strengthening nanomaterials and tailoring their properties to build superior structures. Momeni, in collaboration with researchers from Wright State University and the University of Gottingen in Germany, have revealed a new path for engineering nanomaterials and tailoring their characteristics. This additional dimension added to the material design opens new doors to build superior materials by engineering their atomic structure. The proposed approach can also be used to adjust the chemistry of the material, which is of importance for designing new catalytic materials enhancing the chemical processes. "Stacking faults in nanomaterials drastically change the stress distribution, as the long-range stress fields interact with the boundaries in these materials," said Momeni. "The complex nature of the stresses formed in nanowires, as a result of superposition of the stress fields from surface relaxation and reconstruction as well as the stacking fault stress fields, changes the failure mechanism of the nanowires." Atomistic simulations indicate that the presence of stacking faults results in an inhomogeneous stress distribution within the nanowires due to the change in the sign of stress fields on the two sides of stacking faults (i.e. compressive stress on one side and tensile stress on the other side). This inhomogeneous stress field results in a nonsymmetrical mechanical response of the nanowires under tensile and compressive loadings. The defected nanowires with diameters smaller than 1.8nm and a single stacking fault, surprisingly, have higher a yield stress compared to their counterparts with perfect structures. "This surprising behavior is due to the interaction between the stress fields of stacking faults with the stress field of relaxed and reconstructed surfaces in thin nanowires," Momeni said. "We expect similar results in other 1D nanomaterials with stacking faults, where inhomogeneous stresses form. The developed atomistic model paves the way to study the effect of different stacking fault distributions and engineering defects to tailor material properties." "Dr. Momeni arrived at Louisiana Tech this past August and has hit the ground running," said Dr. David Hall, director of civil engineering, construction engineering technology and mechanical engineering at Louisiana Tech. "His discovery of a method to strengthen materials through the interaction of atomic-level material features is a significant and fundamental contribution in computational mechanics. "Dr. Momeni is at the cutting edge of a new research area that uses supercomputing to understand and design new materials, and we are thrilled to have him on our faculty." Momeni has had research published in prestigious journals such as Nano Letters, Nano Energy, and Scientific Reports, and has received significant attention.
Related Links Louisiana Tech University Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |