. 24/7 Space News .
Los Alamos Computers Probe How Giant Planets Formed

illustration only

Los Alamos NM (SPX) Jul 14, 2004
Nearly five billion years ago, the giant gaseous planets Jupiter and Saturn formed, apparently in radically different ways. So says a scientist at the Laboratory who created exhaustive computer models based on experiments in which the element hydrogen was shocked to pressures nearly as great as those found inside the two planets.

Working with a French colleague, Didier Saumon of Material Science (X-7) created models establishing that heavy elements are concentrated in Saturn's massive core, while those same elements are mixed throughout Jupiter, with very little or no central core at all.

The study, published in this week's Astrophysical Journal, showed that refractory elements such as iron, silicon, carbon, nitrogen and oxygen are concentrated in Saturn's core, but are diffused in Jupiter, leading to a hypothesis that they were formed through different processes.

Saumon collected data from several recent shock compression experiments that have showed how hydrogen behaves at pressures a million times greater than atmospheric pressure, approaching those present in the gas giants.

These experiments- performed over the past several years at U.S. national labs and in Russia- have for the first time permitted accurate measurements of the so-called equation of state of simple fluids, such as hydrogen, within the high-pressure and high-density realm where ionization occurs for deuterium, the isotope made of a hydrogen atom with an additional neutron.

Working with T. Guillot of the Observatoire de la Cote d'Azur, France, Saumon developed about 50,000 different models of the internal structures of the two giant gaseous planets that included every possible variation permitted by astrophysical observations and laboratory experiments.

"Some data from earlier planetary probes gave us indirect information about what takes place inside Saturn and Jupiter, and now we're hoping to learn more from the Cassini mission that just arrived in Saturn's orbit," Saumon said.

"We selected only the computer models that fit the planetary observations."

Jupiter, Saturn and the other giant planets are made up of gases, like the sun. The two planets are about 70 percent hydrogen by mass, with the rest mostly helium and small amounts of heavier elements.

Therefore, their interior structures were hard to calculate because hydrogen's equation of state at high pressures wasn't well understood.

Saumon and Guillot constrained their computer models with data from the deuterium experiments, thereby reducing previous uncertainties for the equation of state of hydrogen, which is the central ingredient needed to improve models of the structures of the planets and how they formed.

"We tried to include every possible variation that might be allowed by the experimental data on shock compression of deuterium," Saumon explained.

By estimating the total amount of the heavy elements and their distribution inside Jupiter and Saturn, the models provide a better picture of how the planets formed through the accretion of hydrogen, helium and solid elements from the nebula that swirled around the sun billions of years ago.

"There's been general agreement that the cores of Saturn and Jupiter are different," Saumon said.

"What's new here is how exhaustive these models are. We've managed to eliminate or quantify many of the uncertainties, so we have much better confidence in the range within which the actual data will fall for hydrogen, and therefore for the refractory metals and other elements.

"Although we can't say our models are precise, we know quite well how imprecise they are," he added.

These results from the models will help guide measurements to be taken by Cassini and future proposed interplanetary space probes to Jupiter.

Related Links
Los Alamos National Laboratory
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Get In Line To Find Extrasolar Planet
Moffet Field CA (SPX) Jul 12, 2004
More than 100 planetary systems have already been discovered around distant stars. McDonald Observatory astronomers Bill Cochran, Michael Endl, and Barbara McArthur have exploited the Hobby-Eberly Telescope's (HET's) capabilities to find and confirm, with great precision, the giant telescope's first planet outside our solar system.







  • It's Business As Usual At KSC
  • It's Action Stations For Lonely Interstellar Voyager
  • Linking With The Future
  • Young Yang Liweis Reach For The Summer Stars

  • Terraforming Mars, The Noble Experiment?
  • Masterminds Of Scientific Art And Rover Movement On Mars
  • Rover To Get Lube Job?
  • Spirit Tries Out Visual Odometry

  • ILS Proton To Launch Another Satellite For DIRECTV
  • Winning Sound With Ariane Technology
  • Sea Launch Delivers Telstar 18 To Orbit
  • Russia's Satan Soars For Peaceful Profit

  • The Good, The Bad, And The Ozone
  • DigitalGlobe Imagery Helps Mississippi Protect Coastal Marine Resources
  • Aura Postponed 24 Hours To July 11
  • Intergraph Ships G/Technology Version 9.2

  • SWAP To Determine Where The Sun And Ice Worlds Meet
  • Hubble Fails To Spot Suspected Sedna Moon
  • Life Beneath The Ice In The Outer Solar System?
  • Gravity Rules: The Nature of Planethood

  • Blue Moon
  • SMART-1 Observes The Earth
  • NASA Researchers Consider Mobile Lunar Base Concepts
  • SMART-1 Finds Small Thrust Level Oscillations Help

  • Apollo's Lunar Leftovers
  • New Moon Shot Not So Costly
  • Armstrong Reflects On A New Visions For Space Exploration
  • Sunny lunar mountain good site for base

  • Massachusetts Police Empowered By New Handheld Law Enforcement Solution
  • Sky Light And LocatioNet Selected For LBS Service In China
  • Brookline Police Put A Cop In Their Pocket
  • Popular Garmin ETrex Legend, ETrex Vista Now In Living Color

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement