. | . |
Lightning fast algorithms can lighten the load of 3D hologram generation by Staff Writers Tokyo, Japan (SPX) Jun 08, 2020
Researchers from Tokyo Metropolitan University have developed a new way of calculating simple holograms for heads-up displays (HUDs) and near-eye displays (NEDs). The method is up to 56 times faster than conventional algorithms and does not require power-hungry graphics processing units (GPUs), running on normal computing cores like those found in PCs. This opens the way to developing compact, power-efficient, next-gen augmented reality devices, including 3D navigation on car windshields and eyewear. The term hologram may still have a sci-fi ring to it, but holography, the science of making records of light in 3D, is used everywhere, from microscopy, fraud prevention on banknotes to state-of-the-art data storage. Everywhere, that is, except for its most obvious offering: truly 3D displays. The deployment of truly 3D displays that don't need special glasses is yet to become widespread. Recent advances have seen virtual reality (VR) technologies make their way into the market, but the vast majority rely on optical tricks that convince the human eye to see things in 3D. This is not always feasible and limits its scope. One of the reasons for this is that generating the hologram of arbitrary 3D objects is a computationally heavy exercise. This makes every calculation slow and power-hungry, a serious limitation when you want to display large 3D images that change in real-time. The vast majority require specialized hardware like graphics processing units (GPUs), the energy-guzzling chips that power modern gaming. This severely limits where 3D displays can be deployed. Thus, a team led by Assistant Professor Takashi Nishitsuji looked at how holograms were calculated. They realized that not all applications needed a full rendering of 3D polygons. By solely focusing on drawing the edge around 3D objects, they succeeded in significantly reducing the computational load of hologram calculations. In particular, they could avoid using Fast-Fourier Transforms (FFTs), the intensive math routines powering holograms for full polygons. The team combined simulation data with real experiments by displaying their holograms on a spatial light modulator (SLM) and illuminating them with laser light to produce a real 3D image. At high resolution, they found that their method could calculate holograms up to 56 times faster, and that the images compared favorably to those made using slower, conventional methods. Importantly, the team only used a normal PC computing core with no standalone graphics processing unit, making the whole process significantly less resource hungry. Faster calculations on simpler cores means lighter, more compact, power-efficient devices that can be used in a wider range of settings. The team have their sights set on heads-up displays (HUDs) on car windshields for navigation, and even augmented reality eyewear to relay instructions on hands-on technical procedures, both exciting prospects for the not too distant future.
New Army 3-D printing study shows promise for predictive maintenance Aberdeen Proving Ground MD (SPX) May 25, 2020 Army researchers have discovered a way to monitor the performance of 3-D printed parts, which tend to have imperfections that affect performance in ways traditionally-machined parts do not. A new study published recently in the International Journal of Advanced Manufacturing Technology showed that the Army could detect and monitor the wear and tear of 3-D printed maraging steel through sensor measurement. These types of measurements help Soldiers maintain readiness because these indicators help pr ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |