. 24/7 Space News .
ENERGY TECH
Laser-boron fusion now 'leading contender' for energy
by Staff Writers
Sydney, Australia (SPX) Dec 18, 2017


Schematic of a hydrogen-boron fusion reactor.

A laser-driven technique for creating fusion that dispenses with the need for radioactive fuel elements and leaves no toxic radioactive waste is now within reach, say researchers.

Dramatic advances in powerful, high-intensity lasers are making it viable for scientists to pursue what was once thought impossible: creating fusion energy based on hydrogen-boron reactions. And an Australian physicist is in the lead, armed with a patented design and working with international collaborators on the remaining scientific challenges.

In a paper in the scientific journal Laser and Particle Beams today, lead author Heinrich Hora from the University of New South Wales in Sydney and international colleagues argue that the path to hydrogen-boron fusion is now viable, and may be closer to realisation than other approaches, such as the deuterium-tritium fusion approach being pursued by U.S. National Ignition Facility (NIF) and the International Thermonuclear Experimental Reactor under construction in France.

"I think this puts our approach ahead of all other fusion energy technologies," said Hora, who predicted in the 1970s that fusing hydrogen and boron might be possible without the need for thermal equilibrium.

Rather than heat fuel to the temperature of the Sun using massive, high-strength magnets to control superhot plasmas inside a doughnut-shaped toroidal chamber (as in NIF and ITER), hydrogen-boron fusion is achieved using two powerful lasers in rapid bursts, which apply precise non-linear forces to compress the nuclei together.

Hydrogen-boron fusion produces no neutrons and, therefore, no radioactivity in its primary reaction. And unlike most other sources of power production - like coal, gas and nuclear, which rely on heating liquids like water to drive turbines - the energy generated by hydrogen-boron fusion converts directly into electricity.

But the downside has always been that this needs much higher temperatures and densities - almost 3 billion degrees Celsius, or 200 times hotter than the core of the Sun.

However, dramatic advances in laser technology are close to making the two-laser approach feasible, and a spate of recent experiments around the world indicate that an 'avalanche' fusion reaction could be triggered in the trillionth-of-a-second blast from a petawatt-scale laser pulse, whose fleeting bursts pack a quadrillion watts of power. If scientists could exploit this avalanche, Hora said, a breakthrough in proton-boron fusion was imminent.

"It is a most exciting thing to see these reactions confirmed in recent experiments and simulations," said Hora, an emeritus professor of theoretical physics at UNSW.

"Not just because it proves some of my earlier theoretical work, but they have also measured the laser-initiated chain reaction to create one billion-fold higher energy output than predicted under thermal equilibrium conditions."

Together with 10 colleagues in six nations - including from Israel's Soreq Nuclear Research Centre and the University of California, Berkeley - Hora describes a roadmap for the development of hydrogen-boron fusion based on his design, bringing together recent breakthroughs and detailing what further research is needed to make the reactor a reality.

An Australian spin-off company, HB11 Energy, holds the patents for Hora's process.

"If the next few years of research don't uncover any major engineering hurdles, we could have prototype reactor within a decade," said Warren McKenzie, managing director of HB11.

"From an engineering perspective, our approach will be a much simpler project because the fuels and waste are safe, the reactor won't need a heat exchanger and steam turbine generator, and the lasers we need can be bought off the shelf," he added.

Research paper

ENERGY TECH
Nuclear fusion project faces delay over US budget cuts: director
Washington (AFP) Dec 7, 2017
The head of the multinational nuclear fusion project known as ITER, in Washington for talks with President Donald Trump's administration, has warned US budget cuts could delay completion of the experimental reactor. Launched a decade ago by seven partners - the European Union, the United States, China, Russia, Japan, India and South Korea - the project has been plagued by delays and budget ... read more

Related Links
University of New South Wales
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Tech titans ramp up tools to win over children

Spaceships and Politics: Sputnik Talks to Cosmonaut Sergei Krikalev

Aerospace and Mitchell Institute release new report on policy needs for space operations

UAE launches programme to send astronauts into space

ENERGY TECH
Nozzle Assemblies Complete for Exploration Mission-1 Solid Rocket Boosters

Rocket Lab to launch rocket from New Zealand

SpaceX's Elon Musk to launch his own car into deep space

ISRO eyes one rocket launch a month in 2018

ENERGY TECH
Space program should focus on Mars, says editor of New Space

EU exempts fuel for ExoMars mission from Russian sanctions

NASA's oldest Mars rover survives another harsh winter

Mars Rover Team's Tilted Winter Strategy Works

ENERGY TECH
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

ENERGY TECH
mu Space becomes first Thai startup to acquire satellite license

Regulation and compliance for nontraditional space missions

Orbital ATK purchase by Northrop Grumman approved by shareholders

UK space launch program receives funding boost from Westminster

ENERGY TECH
Better mastery of heat flow leads to next-generation thermal cloaks

Blackbody radiation from a warm object attracts polarizable objects

Nature's toughest substances decoded

Penn researchers establish universal signature fundamental to how glassy materials fail

ENERGY TECH
Two Super-Earths around red dwarf K2-18

U of T researcher finds Earth-like conditions in little-known exoplanet - and discovers a new planet

A New Spin to Solving Mystery of Stellar Companions

The CHEOPS scientific instrument is complete

ENERGY TECH
New Horizons Corrects Its Course in the Kuiper Belt

Wrapping up 2017 one year out from MU69

Jupiter Blues

Research bolsters possibility of plate tectonics on Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.